Homologues of Radial Spoke Head Proteins Interact with Ca2+/Calmodulin in Tetrahymena Cilia

2006 ◽  
Vol 140 (4) ◽  
pp. 525-533 ◽  
Author(s):  
Hironori Ueno ◽  
Yoshinori Iwataki ◽  
Osamu Numata
Keyword(s):  
2009 ◽  
Vol 20 (13) ◽  
pp. 3055-3063 ◽  
Author(s):  
Raqual Bower ◽  
Kristyn VanderWaal ◽  
Eileen O'Toole ◽  
Laura Fox ◽  
Catherine Perrone ◽  
...  

To understand the mechanisms that regulate the assembly and activity of flagellar dyneins, we focused on the I1 inner arm dynein (dynein f) and a null allele, bop5-2, defective in the gene encoding the IC138 phosphoprotein subunit. I1 dynein assembles in bop5-2 axonemes but lacks at least four subunits: IC138, IC97, LC7b, and flagellar-associated protein (FAP) 120—defining a new I1 subcomplex. Electron microscopy and image averaging revealed a defect at the base of the I1 dynein, in between radial spoke 1 and the outer dynein arms. Microtubule sliding velocities also are reduced. Transformation with wild-type IC138 restores assembly of the IC138 subcomplex and rescues microtubule sliding. These observations suggest that the IC138 subcomplex is required to coordinate I1 motor activity. To further test this hypothesis, we analyzed microtubule sliding in radial spoke and double mutant strains. The results reveal an essential role for the IC138 subcomplex in the regulation of I1 activity by the radial spoke/phosphorylation pathway.


2014 ◽  
Vol 45 (6) ◽  
pp. 723-732 ◽  
Author(s):  
Xinde Hu ◽  
Runchuan Yan ◽  
Lingzhen Song ◽  
Xi Lu ◽  
Shulin Chen ◽  
...  

2008 ◽  
Vol 65 (3) ◽  
pp. 238-248 ◽  
Author(s):  
Maureen Wirschell ◽  
Feifei Zhao ◽  
Chun Yang ◽  
Pinfen Yang ◽  
Dennis Diener ◽  
...  
Keyword(s):  

1986 ◽  
Vol 103 (1) ◽  
pp. 1-11 ◽  
Author(s):  
B D Williams ◽  
D R Mitchell ◽  
J L Rosenbaum

Several flagellar dynein ATPase and radial spokehead genes have been isolated from a Chlamydomonas genomic expression library in lambda gt11. The library was probed with polyclonal and monoclonal antibodies raised against purified flagellar polypeptides, and recombinant phage giving positive signals were cloned. In vitro translation of mRNAs hybrid-selected by the cloned sequences from whole cell RNA provided confirmation of identity for three of the four clones. Evidence supporting the identification of the fourth, which encodes a dynein heavy chain, was provided by antibody selection; the fusion protein produced by this clone selected heavy chain-specific antibodies from a complex polyclonal antiserum recognizing many dynein determinants. One of the radial spoke sequences isolated here is of particular interest because it encodes the wild-type allele of a locus which was defined previously by temperature-sensitive paralyzed flagella mutation pf-26ts (Huang, B., G. Piperno, Z. Ramanis, and D. J. L. Luck, 1981, J. Cell Biol., 88:80-88). The cloned sequence was used to hybrid-select mRNA from mutant pf-26ts cells, and when translated in vitro, the selected mRNA produced a mutant spokehead polypeptide with an altered electrophoretic mobility. This confirms that the pf-26ts mutation alters the primary structure of a radial spokehead polypeptide. To quantify spokehead and dynein mRNAs during flagellar regeneration, all of the cloned sequences were used as hybridization probes in RNA dot experiments. Levels increased rapidly and coordinately after deflagellation, peaked 3-10-fold above nondeflagellated controls, and then returned to control values within 2 h. This accumulation pattern was similar to that of flagellar alpha-tubulin mRNA.


1998 ◽  
Vol 9 (12) ◽  
pp. 3351-3365 ◽  
Author(s):  
Catherine A. Perrone ◽  
Pinfen Yang ◽  
Eileen O’Toole ◽  
Winfield S. Sale ◽  
Mary E. Porter

To identify new loci that are involved in the assembly and targeting of dynein complexes, we have screened a collection of motility mutants that were generated by insertional mutagenesis. One such mutant, 5B10, lacks the inner arm isoform known as the I1 complex. This isoform is located proximal to the first radial spoke in each 96-nm axoneme repeat and is an important target for the regulation of flagellar motility. Complementation tests reveal that 5B10 represents a new I1 locus, IDA7. Biochemical analyses confirm thatida7 axonemes lack at least five I1 complex subunits. Southern blots probed with a clone containing the gene encoding the 140-kDa intermediate chain (IC) indicate that theida7 mutation is the result of plasmid insertion into the IC140 gene. Transformation with a wild-type copy of the IC140 gene completely rescues the mutant defects. Surprisingly, transformation with a construct of the IC140 gene lacking the first four exons of the coding sequence also rescues the mutant phenotype. These studies indicate that IC140 is essential for assembly of the I1 complex, but unlike other dynein ICs, the N-terminal region is not critical for its activity.


2009 ◽  
Vol 284 (43) ◽  
pp. 29437-29445 ◽  
Author(s):  
Arif Jivan ◽  
Svetlana Earnest ◽  
Yu-Chi Juang ◽  
Melanie H. Cobb

2018 ◽  
Vol 103 (3) ◽  
pp. 413-420 ◽  
Author(s):  
Yasmina Auguste ◽  
Valérie Delague ◽  
Jean-Pierre Desvignes ◽  
Guy Longepied ◽  
Audrey Gnisci ◽  
...  

2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S189
Author(s):  
Hitoshi Sakakibara ◽  
Yosuke Shimizu ◽  
Hiroaki Kojima
Keyword(s):  

1982 ◽  
Vol 92 (3) ◽  
pp. 722-732 ◽  
Author(s):  
C J Brokaw ◽  
D J Luck ◽  
B Huang

The mutation uni-1 gives rise to uniflagellate Chlamydomonas cells which rotate around a fixed point in the microscope field, so that the flagellar bending pattern can be photographed easily. This has allowed us to make a detailed analysis of the wild-type flagellar bending pattern and the bending patterns of flagella on several mutant strains. Cells containing uni-1, and recombinants of uni-1 with the suppressor mutations, suppf-1 and suppf-3, show the typical asymmetric bending pattern associated with forward swimming in Chlamydomonas, although suppf-1 flagella have about one-half the normal beta frequency, apparently as the result of defective function of the outer dynein arms. The pf-17 mutation has been shown to produce nonmotile flagella in which radial spoke heads and five characteristic axonemal polypeptides are missing. Recombinants containing pf-17 and either suppf-2 or suppf-3 have motile flagella, but still lack radial-spoke heads and the associated polypeptides. The flagellar bending pattern of these recombinants lacking radial-spoke heads is a nearly symmetric, large amplitude pattern which is quite unlike the wild-type pattern. However, the presence of an intact radial-spoke system is not required to convert active sliding into bending and is not required for bend initiation and bend propagation, since all of these processes are active in suppfpf-17 recombinants. The function of the radial-spoke system appears to be to convert the symmetric bending pattern displayed by these recombinants into the asymmetric bending pattern required for efficient swimming, by inhibiting the development of reverse bends during the recovery phase of the bending cycle.


Sign in / Sign up

Export Citation Format

Share Document