scholarly journals Research progress on preparation, mechanism, and clinical application of nanofat

Author(s):  
Pengbing Ding ◽  
Enhang Lu ◽  
Guan Li ◽  
Yidan Sun ◽  
Wenhui Yang ◽  
...  

Abstract Autologous adipose tissue is an ideal soft tissue filling material in theory, which has the advantages of easy access, comprehensive source, and high biocompatibility and is now widely used in clinical practice. Based on the above benefits of autologous fat, autologous fat grafting is an essential technique in plastic surgery. Conventional macrofat is used to improve structural changes after soft tissue damage or loss caused by various causes such as disease, trauma, or aging. Due to the large diameter of particles and to avoid serious complications such as fat embolism, blunt needles with larger diameters (2mm) are required, making the macrofat grafting difficult to the deep dermis and sub-dermis. Nanofat grafting is a relatively new technology that has gained popularity in cosmetic surgery in recent years. Nanofat is produced by mechanical shuffling and filtration of microfat, which is harvested by liposuction. The harvesting and processing of nanofat are cost-effective as it does not require additional equipment or culture time. Unlike microfat, nanofat particles are too small to provide a notable volumizing effect. Studies have shown that nanofat contains abundant stromal vascular fraction (SVF) cells and adipose-derived stem cells (ADSCs), which help reconstruct dermal support structures, such as collagen, and regenerate healthier, younger-looking skin. Moreover, the fluid consistency of nanofat allows application in tissue regeneration, such as scars, chronic wounds, and facial rejuvenation. This article reviews the current research progress on the preparation, mechanism, and clinical application of nanofat.

2012 ◽  
Vol 39 (5) ◽  
pp. 534 ◽  
Author(s):  
Sang Kyun Lee ◽  
Deok-Woo Kim ◽  
Eun-Sang Dhong ◽  
Seung-Ha Park ◽  
Eul-Sik Yoon

2014 ◽  
Vol 3 (1) ◽  
pp. 62-69
Author(s):  
Kshemendra Senarath-Yapa ◽  
Rebecca Garza ◽  
Adrian McArdle ◽  
Graham Walmsley ◽  
Michael Hu ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1538 ◽  
Author(s):  
Pietro Gentile ◽  
Simone Garcovich

The number of clinical trials evaluating adipose-derived mesenchymal stem cells (AD-MSCs), platelet-rich plasma (PRP), and biomaterials efficacy in regenerative plastic surgery has exponentially increased during the last ten years. AD-MSCs are easily accessible from various fat depots and show intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. AD-MSCs have been used in the treatment of soft tissue defects and chronic wounds, employed in conjunction with a fat grafting technique or with dermal substitute scaffolds and platelet-rich plasma. In this systematic review, an overview of the current knowledge on this topic has been provided, based on existing studies and the authors’ experience. A multistep search of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov, Scopus database, and Cochrane databases has been performed to identify papers on AD-MSCs, PRP, and biomaterials used in soft tissue defects and chronic wounds. Of the 2136 articles initially identified, 422 articles focusing on regenerative strategies in wound healing were selected and, consequently, only 278 articles apparently related to AD-MSC, PRP, and biomaterials were initially assessed for eligibility. Of these, 85 articles were excluded as pre-clinical, experimental, and in vitro studies. For the above-mentioned reasons, 193 articles were selected; of this amount, 121 letters, expert opinions, commentary, and editorials were removed. The remaining 72 articles, strictly regarding the use of AD-MSCs, PRP, and biomaterials in chronic skin wounds and soft tissue defects, were analyzed. The studies included had to match predetermined criteria according to the patients, intervention, comparator, outcomes, and study design (PICOS) approach. The information analyzed highlights the safety and efficacy of AD-MSCs, PRP, and biomaterials on soft tissue defects and chronic wounds, without major side effects.


Sign in / Sign up

Export Citation Format

Share Document