scholarly journals Systematic Review: Adipose-Derived Mesenchymal Stem Cells, Platelet-Rich Plasma and Biomaterials as New Regenerative Strategies in Chronic Skin Wounds and Soft Tissue Defects

2021 ◽  
Vol 22 (4) ◽  
pp. 1538 ◽  
Author(s):  
Pietro Gentile ◽  
Simone Garcovich

The number of clinical trials evaluating adipose-derived mesenchymal stem cells (AD-MSCs), platelet-rich plasma (PRP), and biomaterials efficacy in regenerative plastic surgery has exponentially increased during the last ten years. AD-MSCs are easily accessible from various fat depots and show intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. AD-MSCs have been used in the treatment of soft tissue defects and chronic wounds, employed in conjunction with a fat grafting technique or with dermal substitute scaffolds and platelet-rich plasma. In this systematic review, an overview of the current knowledge on this topic has been provided, based on existing studies and the authors’ experience. A multistep search of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov, Scopus database, and Cochrane databases has been performed to identify papers on AD-MSCs, PRP, and biomaterials used in soft tissue defects and chronic wounds. Of the 2136 articles initially identified, 422 articles focusing on regenerative strategies in wound healing were selected and, consequently, only 278 articles apparently related to AD-MSC, PRP, and biomaterials were initially assessed for eligibility. Of these, 85 articles were excluded as pre-clinical, experimental, and in vitro studies. For the above-mentioned reasons, 193 articles were selected; of this amount, 121 letters, expert opinions, commentary, and editorials were removed. The remaining 72 articles, strictly regarding the use of AD-MSCs, PRP, and biomaterials in chronic skin wounds and soft tissue defects, were analyzed. The studies included had to match predetermined criteria according to the patients, intervention, comparator, outcomes, and study design (PICOS) approach. The information analyzed highlights the safety and efficacy of AD-MSCs, PRP, and biomaterials on soft tissue defects and chronic wounds, without major side effects.

Author(s):  
Elena Lucattelli ◽  
Irene Laura Lusetti ◽  
Federico Cipriani ◽  
Alessandro Innocenti ◽  
Giorgio De Santis ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 532
Author(s):  
Pietro Gentile ◽  
Simone Garcovich

The skin is a natural barrier against the ultraviolet (UV) radiation of sunlight. The long-term and/or repetitive exposure to the sunlight and related UV radiation may change the skin structure, decreasing collagen production, promoting premature skin aging, which is termed “photoaging”. The signs of photoaging include wrinkle formation, mottled pigmentation, and/or cancerous changes. For many years, adipose-derived mesenchymal stem cells (AD-MSCs) and fat grafting (F-GRF) have been used to combat photoaging signs, wrinkles, loss of elasticity, and face soft tissue defects. Several studies have analyzed in vitro actions of AD-MSCs against photoaging’s effects, thanks to their migratory activity, paracrine actions, and related in vivo–ex vivo outcomes. In fact, AD-MSCs act against skin photoaging in vitro via activation of dermal fibroblast proliferation, antioxidant effect, and matrix metalloproteinases (MMPs) reduction. In vivo and ex vivo outcomes regard the local injection of AD-MSCs, F-GRF, and/or enriched-F-GRF with AD-MSCs directly in the wrinkles and the face’s soft tissue defects. This concise review summarizes the most recent in vitro, in vivo and ex vivo outcomes and developments on the effects of AD-MSCs and F-GRF against photoaging.


2021 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Wolfram Demmer ◽  
Heiko Sorg ◽  
Andreas Steiert ◽  
Jörg Hauser ◽  
Daniel Johannes Tilkorn

Wounds and tissue defects of the hand and foot often lead to severe functional impairment of the affected extremity. Next to general principles of wound healing, special functional and anatomic considerations must be taken into account in the treatment of wounds in these anatomical regions to achieve a satisfactory reconstructive result. In this article, we outline the concept of wound healing and focus on the special aspects to be considered in wounds of the hand and foot. An overview of different treatment and dressing techniques is given with special emphasis on the reconstruction of damaged structures by plastic surgical means.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yasmin Hadian ◽  
Michelle D. Bagood ◽  
Sara E. Dahle ◽  
Apra Sood ◽  
R. Rivkah Isseroff

Chronic wounds exhibit persistent inflammation with markedly delayed healing. The significant burden of chronic wounds, which are often resistant to standard therapy, prompts further research on novel therapies. Since the interleukin-17 family has been implicated as a group of proinflammatory cytokines in immune-mediated diseases in the gut and connective tissue, as well as inflammatory skin conditions, we consider here if it may contribute to the pathogenesis of chronic wounds. In this review, we discuss the interleukin-17 family’s signaling pathways and role in tissue repair. A PubMed review of the English literature on interleukin-17, wound healing, chronic wounds, and inflammatory skin conditions was conducted. Interleukin-17 family signaling is reviewed in the context of tissue repair, and preclinical and clinical studies examining its role in the skin and other organ systems are critically reviewed. The published work supports a pathologic role for interleukin-17 family members in chronic wounds, though this needs to be more conclusively proven. Clinical studies using monoclonal interleukin-17 antibodies to improve healing of chronic skin wounds have not yet been performed, and only a few studies have examined interleukin-17 family expression in chronic skin wounds. Furthermore, different interleukin-17 family members could be playing selective roles in the repair process. These studies suggest a therapeutic role for targeting interleukin-17A to promote wound healing; therefore, interleukin-17A may be a target worthy of pursuing in the near future.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Massimo Conese ◽  
Luigi Annacontini ◽  
Annalucia Carbone ◽  
Elisa Beccia ◽  
Liberato Roberto Cecchino ◽  
...  

The continuous improvements in the field of both regenerative medicine and tissue engineering have allowed the design of new and more efficacious strategies for the treatment of chronic or hard-to-heal skin wounds, which represent heavy burden, from a medical and economic point of view. These novel approaches are based on the usage of three key methodologies: stem cells, growth factors, and biomimetic scaffolds. These days, the adipose tissue can be considered the main source of multipotent mesenchymal stem cells, especially adipose-derived stem cells (ASCs). ASCs are easily accessible from various fat depots and show an intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. ASCs can be found in fat grafts, historically used in the treatment of chronic wounds, and have been evaluated as such in both animal models and human trials, to exploit their capability of accelerating wound closure and inducing a correct remodeling of the newly formed fibrovascular tissue. Since survival and fitness of ASCs need to be improved, they are now employed in conjunction with advanced wound dressings, together with dermal regenerative templates and platelet-rich plasma (as a source of growth and healing factors). In this work, we provide an overview of the current knowledge on the topic, based on existing studies and on our own experience.


2020 ◽  
Vol 1 (02) ◽  
pp. 45-50
Author(s):  
Mohamed M. Abdul-Monem ◽  
Mohamed H. Helal ◽  
Moustafa N. Aboushelib

Abstract Objective To evaluate a naturally derived acellular dermal scaffold for soft tissue reconstruction using high-intensity focused ultrasound energy (HIFU). Materials and Methods Acellular dermal scaffolds (ADSs) were prepared by purification of bovine skin. Half of the scaffolds were subjected to high-intensity focused ultrasound energy (HIFU) to modify collagen structure, whereas the other half was used as control. A large skin defect was made in the dorsum of white mice, and the scaffolds were used to cover the induced defects. Wound healing was evaluated histologically after 2, 6, and 12 weeks using common and specific stained sections (n = 20). Statistical Analysis Mean values and standard deviations were calculated for each group, and Student’s t-test was used for statistical analysis (α= 0.05; n = 20). Results After 2 weeks, all examined specimens revealed the presence of inflammatory cellular infiltration and early immature blood vessel formation. After 6 weeks, inflammatory cellular infiltration was reduced, with evidence of maturation of new blood vessels observed for all groups. After 12 weeks, there was a significant increase (F = 124, p < 0.01) in new collagen formation and count of mature blood vessels observed for the HIFU group compared with control. Evidence of remodeling of new collagen fibers and biodegradation of the grafts was also observed. Conclusions HIFU-modified ADSs enhanced wound healing and could be used to cover large soft tissue defects.


2014 ◽  
Vol 30 (S 01) ◽  
Author(s):  
Matei Ileana ◽  
Alexandru Georgescu ◽  
Radu Lacatus ◽  
Manolis Daskalakis

Sign in / Sign up

Export Citation Format

Share Document