Drip and Overhead Sprinkler Irrigation in Blueberry as Cultural Control forDrosophila suzukii(Diptera: Drosophilidae) in Northwestern United States

2018 ◽  
Vol 112 (2) ◽  
pp. 745-752 ◽  
Author(s):  
Dalila Rendon ◽  
Vaughn M Walton
Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 852-852 ◽  
Author(s):  
S. N. Wolfenbarger ◽  
E. B. Eck ◽  
C. M. Ocamb ◽  
C. Probst ◽  
M. E. Nelson ◽  
...  

Resistant cultivars of hop (Humulus lupulus) have been grown, with the aim of helping to manage powdery mildew in the Pacific Northwest since the first report of the disease in the field in 1997 (4). A major objective of many breeding programs is development of resistance to powdery mildew, and this has generally been achieved by single resistance genes (qualitative resistance). One such gene, R6 (3), has been utilized extensively in new cultivars and has prevented epidemics of the disease in those cultivars across the Pacific Northwestern United States for approximately 15 years. In 2011, a grower in Washington State reported outbreaks of powdery mildew on cv. Apollo, which is thought to possess powdery mildew resistance derived from R6. Fungicides and cultural control measures were applied, and the grower reported no substantial crop damage from the disease. During the winter of 2012, the same grower planted rhizomes of cv. Apollo in a greenhouse in the Yakima Valley of Washington State and later found the plants to be affected by powdery mildew. Affected leaves from plants of cvs. Apollo, Newport, and Nugget (all reported [3] or assumed to possess R6 based on pedigree) grown in the same greenhouse were later provided to the authors. Conidia obtained from each affected plants were transferred to plants of the highly susceptible cv. Symphony, which is not known to contain any resistance genes. After 10 to 14 days of incubation, resultant conidia from each cultivar above (total of three isolates) were transferred to greenhouse grown plants of cvs. Nugget and Symphony and incubated at 18°C. Within 7 days, all three isolates produced powdery mildew colonies characteristic of P. macularis (2) on both cultivars. Cleistothecia did not develop in any colonies. In addition, Nugget and Symphony plants were inoculated with a field population of P. macularis originating from cultivars lacking R6 in Oregon. These inoculations on Nugget did not develop powdery mildew whereas Symphony plants did. Non-inoculated controls remained free of powdery mildew. Results were identical in two additional experiments. The sequence of the mating type idiomorph, MAT1-1, was obtained to confirm identity of the pathogen as P. macularis as described previously (1). The sequences were identical among the three isolates obtained from the greenhouse in Washington and isolates of P. macularis obtained previously from Oregon and Washington. MAT1-2 idiomorph was not detected in the isolates collected. While R6-virulent strains have been detected previously in race characterization experiments, these strains have not caused widespread epidemics of powdery mildew. The increasing prevalence of virulent strains of P. macularis and outbreaks of powdery mildew on formerly resistant cultivars necessitates changes in breeding strategies and disease management efforts to minimize damage resulting from the disease. The distribution of virulent strains of the pathogen and susceptibility of formerly resistance cultivars to powdery mildew are currently under investigation. References: (1) B. Asalfet et al. Phytopathology 103:717, 2013. (2) R. Bélanger et al. The Powdery Mildews: a Comprehensive Treatise. APS Press, St. Paul, MN, 2002. (3) P. Darby. Brew Hist. 121:94, 2005. (4) C. Ocamb et al. Plant Dis. 83:1072, 1999.


2013 ◽  
Vol 146 ◽  
pp. 51-65 ◽  
Author(s):  
Ma. Carmelita R. Alberto ◽  
Roland J. Buresh ◽  
Takashi Hirano ◽  
Akira Miyata ◽  
Reiner Wassmann ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 198
Author(s):  
Yinping Li ◽  
George N. Mbata ◽  
Somashekhar Punnuri ◽  
Alvin M. Simmons ◽  
David I. Shapiro-Ilan

Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is among the most economically important insect pests of various vegetable crops in the Southern United States. This insect is considered a complex of at least 40 morphologically indistinguishable cryptic species. Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) was initially introduced in the United States around 1985 and has since rapidly spread across the Southern United States to Texas, Arizona, and California, where extreme field outbreaks have occurred on vegetable and other crops. This pest creates extensive plant damage through direct feeding on vegetables, secreting honeydew, causing plant physiological disorders, and vectoring plant viruses. The direct and indirect plant damage in vegetable crops has resulted in enormous economic losses in the Southern United States, especially in Florida, Georgia, and Texas. Effective management of B. tabaci on vegetables relies mainly on the utilization of chemical insecticides, particularly neonicotinoids. However, B. tabaci has developed considerable resistance to most insecticides. Therefore, alternative integrated pest management (IPM) strategies are required, such as cultural control by manipulation of production practices, resistant vegetable varieties, and biological control using a suite of natural enemies for the management of the pest.


1992 ◽  
Vol 117 (5) ◽  
pp. 757-761 ◽  
Author(s):  
George C. Elliott

Water retention at effective water-holding capacity (EWHC) and container capacity (CCAP) were measured in four rockwool-peat potting media amended with a wetting agent and/or a hydrophilic gel in pots 12 cm tall containing 445 cm3 medium, and irrigated by capillary mat, flood-and-drain, trickle emitter, or overhead sprinkler. Water retention was measured by weighing. Irrigation was continued until EWHC (i.e., net water retention when no weight increase could be obtained by further irrigation) was reached. CCAP (i.e., net water retention following saturation and free drainage) was measured at the end of each experiment. Irrigation method and medium amendments significantly affected EWHC. Rank order of irrigation treatments was sprinkler ≥ trickle > flood and drain ≥ mat. Hydrophilic gel increased both EWHC and CCAP, while the wetting agent increased EWHC but decreased or had no effect on CCAP. Significant interactions of gel and wetting agent were observed in some media. EWHC was less than CCAP, and EWHC was better correlated with CCAP with trickle emitter and overhead sprinkler irrigation than with capillary mat and flood-and-drain irrigation.


Sign in / Sign up

Export Citation Format

Share Document