scholarly journals Optimizing Egg Recovery From Wild Northern Corn Rootworm Beetles (Coleoptera: Chrysomelidae)

2019 ◽  
Vol 112 (6) ◽  
pp. 2737-2743
Author(s):  
Adriano E Pereira ◽  
Dalton C Ludwick ◽  
Julie Barry ◽  
Lance J Meinke ◽  
Daniel J Moellenbeck ◽  
...  

Abstract The northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), is one of the most important insect pests in the U.S. Corn Belt. Efforts to obtain eggs from wild northern corn rootworm populations using techniques developed for other rootworm species have been unsuccessful due to lack of oviposition. In 2016, we evaluated four oviposition media in choice tests within each of three female densities in 30.5 × 30.5 × 30.5 cm BugDorm cages. The number of eggs laid per female was significantly affected by female density and the interaction of female density × oviposition media, but oviposition was relatively poor in all oviposition media (1.2 eggs per female when averaging the three female densities and all oviposition media). Single females were also evaluated in nonchoice assays in 6 cm × 6 cm × 8 cm clear plastic boxes and averaged up to 108 eggs per female depending on the oviposition media. In 2017, the cumulative number of eggs laid per female in boxes with one female was not significantly different from the number of eggs laid per female in boxes with 3 females. In 2018, the cumulative number of eggs laid per female was not significantly different between female densities of 1, 3, 5, or 10 females per box. Total egg production per box therefore increased as female density increased. More than 27,000 wild northern corn rootworm eggs were collected from just 190 females when collected relatively early in the field season. We now have an efficient and robust system for obtaining eggs from wild northern corn rootworm females.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Man P. Huynh ◽  
Chad Nielson ◽  
B. Wade French ◽  
Dalton C. Ludwick ◽  
Ryan W. Geisert ◽  
...  

AbstractThe northern corn rootworm, Diabrotica barberi Smith & Lawrence, has a univoltine life cycle that typically produces one generation a year. When rearing the northern corn rootworm in the laboratory, in order to break diapause, it is necessary to expose eggs to a five month cold period before raising the temperature. By selective breeding of the small fraction of eggs that hatched without cold within 19–32 days post oviposition, we were able to develop a non-diapausing colony of the northern corn rootworm within five generations of selection. Through selection, the percentages of adult emergence from egg hatch without exposure to cold treatment significantly increased from 0.52% ± 0.07 at generation zero to 29.0% ± 2.47 at generation eight. During this process, we developed an improved method for laboratory rearing of both the newly developed non-diapausing strain as well as the diapausing strain. The development of the non-diapausing colony along with the improvements to the rearing system will allow researchers to produce up to six generations of the northern corn rootworm per year, which would facilitate research and advance our knowledge of this pest at an accelerated rate.


2018 ◽  
Author(s):  
◽  
Dalton C. Ludwick

Western corn rootworm (Diabrotica virgifera virgifera LeConte) and northern corn rootworm (Diabrotica barberi (Smith and Lawrence)) are major pests of maize in the USA. These pests have been managed with a variety of tactics over the last century. Both Diabrotica spp. have adapted to crop rotation in different ways in certain regions of the USA as well as to some of the insecticides targeted at them. D. v. virgifera has adapted to more of the chemical control measures and transgenic control methods. Discussed in this review are the challenges associated with managing both species, and how current management strategies might be combined and implemented to help manage damage from these species. Also, we discuss the potential for new technologies, such as RNA interference, to be used in the future.


2015 ◽  
Vol 23 (6) ◽  
pp. 913-917 ◽  
Author(s):  
Isaac O. Oyediran ◽  
Phillip Matthews ◽  
Narendra Palekar ◽  
Wade French ◽  
Jared Conville ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 979
Author(s):  
Deirdre A. Prischmann-Voldseth ◽  
Stephanie J. Swenson ◽  
Robert Brenner

Landscape diversification with flowering plants can benefit pollinators and natural enemies, although insect pests can also use floral resources for nutrition and chemoprotection. Corn rootworms (Coleoptera: Chrysomelidae, Diabrotica spp.) are major pests of corn (Zea mays L.), and while subterranean larvae primarily feed on corn roots, adult rootworms commonly consume floral resources from other plant species. We quantified the species, density, and sex of adult corn Diabroticite rootworm beetles on wild and cultivated sunflower, corn, and squash, quantified pollen within the bodies of adult northern corn rootworms [NCR, D. barberi (Smith & Lawrence)], and investigated how consumption of sunflower and corn pollen by NCR adults impacted predation of their eggs by two soil-dwelling mites with different feeding specialization. NCR were the most common Diabroticite species on sunflower inflorescences and western corn rootworm (WCR, D. v. virgifera LeConte) were more abundant in corn and squash blossoms. Pollen feeding by NCR adults did not impact egg predation by omnivorous Tyrophagus putrescentiae (Schrank) (Acari: Sarcoptiformes, Acaridae), but predatory Stratiolaelaps scimitus (Womersley) (Acari: Mesostigmata, Laelapidae) ate eggs less frequently and took longer to feed on eggs from NCR females that had fed on sunflower pollen. This research suggests pollen feeding by adult NCR can impact predation of their eggs. While increasing plant diversity can benefit natural enemies and pest control within agroecosystems, it is important to consider how floral resources alter dietary preferences of biocontrol agents.


1985 ◽  
Vol 11 (1) ◽  
pp. 21-26 ◽  
Author(s):  
P. L. Guss ◽  
P. E. Sonnet ◽  
R. L. Carney ◽  
J. H. Tumlinson ◽  
P. J. Wilkin

Sign in / Sign up

Export Citation Format

Share Document