scholarly journals Duration of Retinol Isotope Dilution Studies with Compartmental Modeling Affects Model Complexity, Kinetic Parameters, and Calculated Vitamin A Stores in US Women

2018 ◽  
Vol 148 (8) ◽  
pp. 1387-1396 ◽  
Author(s):  
Bryan M Gannon ◽  
Ashley R Valentine ◽  
Christopher R Davis ◽  
Julie A Howe ◽  
Sherry A Tanumihardjo
2019 ◽  
Vol 149 (11) ◽  
pp. 2065-2072 ◽  
Author(s):  
Jennifer Lynn Ford ◽  
Joanne Balmer Green ◽  
Michael H Green

ABSTRACT Background Mathematical modeling of theoretical data has been used to validate experimental protocols and methods in several fields. Objectives We hypothesized that adding dietary vitamin A intake data as an input during compartmental modeling of retinol kinetics would lead to accurate prediction of vitamin A total body stores (TBS) at 2 specified study lengths and would reduce study duration required to accurately define the system. Methods We generated reference values for state variables (including TBS and intake) and kinetic parameters for 12 theoretical individuals (4 each of children, younger adults, and older adults) based on modeling plasma retinol tracer data for 365 d. We compared TBS predictions using data to 28 d (children) or 56 d (adults) without and with intake included in the model to reference values for each subject. Then, by truncating data sets from 365 d, we determined the shortest study duration required to accurately define the system without and with inclusion of vitamin A intake. Results Reference values for TBS ranged from 30 to 3023 µmol. Study durations of 28 and 56 d were sufficient to accurately predict TBS for 6 of the 12 subjects without intake; adding intake resulted in accurate predictions of TBS for all individuals. When intake was not included as a modeling input, durations of 35–310 d were required to define the system; inclusion of intake data substantially reduced the time required to 10–42 d. Conclusions Inclusion of vitamin A intake as additional data input when modeling vitamin A kinetics allows investigators to accurately predict TBS and define the vitamin A system in studies of reasonable length (4 wk in children and 8 wk in adults). Because it is generally possible to obtain estimates/measures of intake, including such data increases confidence in model predictions while also making studies more feasible.


2013 ◽  
Vol 72 (OCE4) ◽  
Author(s):  
Anthony Oxley ◽  
Philip Berry ◽  
Joseph Cowell ◽  
Michael Hall ◽  
John Hesketh ◽  
...  

2019 ◽  
Vol 244 (16) ◽  
pp. 1430-1437 ◽  
Author(s):  
Jean F Bationo ◽  
Augustin N Zeba ◽  
Nadine D Coulibaly ◽  
Jesse Sheftel ◽  
Christopher R Davis ◽  
...  

Vitamin A status assessment is not straightforward. Retinol isotope dilution (RID) testing requires time for the tracer dose to mix with the total body stores of vitamin A (TBS). Researchers are interested in shortening the time interval between tracer administration and follow-up blood draws, and in re-examining current assumptions about liver mass for calculation of total liver vitamin A reserves (TLR, in µmol/g liver). Schoolchildren (aged 7–12 years; n = 72) were recruited from one school in Burkina Faso. After a baseline blood draw, 1.0 µmol [14,15]-13C2-retinyl acetate was administered to estimate TBS and TLR by retinol isotope dilution with follow-up blood samples at days 7 and 14. Correlations were determined to evaluate if sampling at day 7 could be used to predict TLR compared with day 14. Liver mass was estimated using body surface area and compared with the currently used assumption of liver weight equivalent to 3% of body weight. (This trial was registered at Pan African Clinical Trial Registry: PACTR201702001947398). Liver mass calculated using body surface area did not differ from the standard assumption of 3% of body weight and yielded similar TLR values. The children in this study had mean TLR (0.67 ± 0.35 µmol/g) in the adequate range, while serum retinol concentrations (0.92 ± 0.33 µmol/L) predicted 25% vitamin A deficiency. TLR values at seven days were highly correlated with, but significantly different from day 14 ( P <  0.0001, r =  0.85) and needed a correction factor added to the equation to yield equivalency. Blood drawing at day 7, using correction factors in the prediction equation and the current assumption of liver mass as 3% of body weight, can be used to estimate TLR in schoolchildren with adequate vitamin A status in 13 C2-RID applications, but further investigations are needed to verify the seven-day predictive equation. Impact statement Biomarkers of vitamin A status that reflect the gold standard, i.e. liver biopsy, are available but undergoing refinement to increase accessibility in community-based applications. Retinol isotope dilution testing is one such biomarker. Researchers are interested in decreasing the length of time between isotope administration and follow-up blood draws. This study compared a 7-day blood draw with a 14-day sample. With the simple addition of a correction factor to the prediction equation, the values for total body vitamin A stores were similar, but variation increased with increasing liver reserves. The assumption of 3% of body weight as liver weight in school-aged children was also investigated and confirmed as appropriate in the calculation for total liver vitamin A reserves. Simplifying isotope dilution for population evaluation and building capacity for mass spectrometry analyses are important areas of nutrition development to inform public health programs.


2020 ◽  
Vol 150 (8) ◽  
pp. 2223-2229 ◽  
Author(s):  
Michael H Green ◽  
Joanne Balmer Green ◽  
Jennifer Lynn Ford

ABSTRACT Background Better methods are needed for determining vitamin A absorption efficiency in humans to support development of dietary recommendations and to improve the accuracy of predictions of vitamin A status. Objectives We developed and evaluated a method for estimating vitamin A absorption efficiency based on compartmental modeling of theoretical data on postprandial plasma retinyl ester (RE) kinetics. Methods We generated data on plasma RE and retinol kinetics (30 min to 8 h or 56 d, respectively) after oral administration of labeled vitamin A for 12 theoretical adults with a range of values assigned for vitamin A absorption (55–90%); we modeled all data to obtain best-fit values for absorption and other parameters using Simulation, Analysis, and Modeling software. We then modeled RE data only (16 or 10 samples), with or without added random error, and compared assigned to predicted absorption values. We also compared assigned values to areas under RE response curves (RE AUCs). Results We confirmed that a unique value for vitamin A absorption cannot be identified by modeling plasma retinol tracer kinetics. However, when RE data were modeled, predicted vitamin A absorptions were within 1% of assigned values using data without error and within 12% when 5% error was included. When the sample number was reduced, predictions were still within 13% for 10 of the 12 subjects and within 23% overall. Assigned values for absorption were not correlated with RE AUC (P = 0.21). Conclusions We describe a feasible and accurate method for determining vitamin A absorption efficiency that is based on compartmental modeling of plasma RE kinetic data collected for 8 h after a test meal. This approach can be used in a clinical setting after fasting subjects consume a fat-containing breakfast meal with a known amount of vitamin A or a stable isotope label.


2019 ◽  
Vol 244 (7) ◽  
pp. 579-587 ◽  
Author(s):  
Jesse Sheftel ◽  
Rebecca L Surles ◽  
Sherry A Tanumihardjo

Retinol isotope dilution (RID) is used to estimate total body vitamin A (VA) stores in groups to assess VA status. Metabolic differences during lactation may affect RID calculations as currently applied. We evaluated the time required for isotopic equilibration between serum and liver retinol in piglets, and the utility of milk retinol isotopic enrichment as a proxy for serum in lactating sows. Piglets ( n = 24) and sows ( n = 6) were fed 1.75 or 20 µmol 13 C2-retinyl acetate, respectively. Piglets ( n = 5 or 7) were killed on d 0, 4, 7, or 14. Blood and milk were collected at d 0, 0.5, 1, 2, 4, 7, 10, 14, and 21 before the sows were killed to collect liver. Retinol 13 C-enrichment was determined by gas chromatography-combustion-isotope ratio mass spectrometry. Equilibration time and RID-predicted liver VA reserves were calculated. In piglets, serum and liver retinol 13 C-enrichment differed significantly in individuals at d 4 and 7 ( P = 0.008, 0.03) but not d 14 ( P = 0.06); however, mean values were not different by d 4 ( P = 0.62). Current RID equations accurately predicted VA deficiency (means ≤0.027 µmol/g liver) in the piglets. In sows, milk and serum retinol 13 C-enrichment reached equilibrium between 2 and 7 d post-dose. After correcting for dose lost to milk, RID equations predicted higher liver stores than measured values even though the serum to liver atom % was 1.00 ± 0.01 at kill. In VA deficient infants, a shorter period may be accurate in population-level RID studies when using appropriate assumptions. In lactating women, the RID may have decreased accuracy due to variable losses of tracer in milk. Furthermore, assumptions about storage and loss of the dose in milk must be evaluated in lactating women considering the observed discrepancy between predicted and measured stores. Impact statement Vitamin A (VA) deficiency and hypervitaminosis A have been reported in groups of people worldwide. Conventional biomarkers of VA deficiency (e.g. serum retinol concentration, dose response tests) are not able to distinguish between sufficiency and hypervitaminosis A. Retinol isotope dilution (RID) predictions of VA status have been validated in humans and animal models from deficiency through toxicity; however, RID during life stages with unique issues related to isotopic tracing, such as infancy and lactation, requires further evaluation. This study investigated RID in piglets and lactating sows as models for human infants and women. In piglets, RID successfully determined VA deficiency (confirmed with liver analysis), and that the tracer mixes quickly. Conversely, in lactating sows, although serum and milk enrichments were similar, traditional RID equations overestimated VA stores, likely due to losses of tracer and higher extrahepatic VA storage than predictions. These data inform researchers about the challenges of using RID during lactation.


2014 ◽  
Vol 55 (8) ◽  
pp. 1738-1749 ◽  
Author(s):  
Libo Tan ◽  
Amanda E. Wray ◽  
Michael H. Green ◽  
A. Catharine Ross

Sign in / Sign up

Export Citation Format

Share Document