Pharmacologically Guided Phase I Clinical Trials Based Upon Preclinical Drug Development

1990 ◽  
Vol 82 (16) ◽  
pp. 1321-1326 ◽  
Author(s):  
J. M. Collins ◽  
C. K. Grieshaber ◽  
B. A. Chabner
2019 ◽  
pp. 1-10 ◽  
Author(s):  
Guillaume Beinse ◽  
Virgile Tellier ◽  
Valentin Charvet ◽  
Eric Deutsch ◽  
Isabelle Borget ◽  
...  

PURPOSE Drug development in oncology currently is facing a conjunction of an increasing number of antineoplastic agents (ANAs) candidate for phase I clinical trials (P1CTs) and an important attrition rate for final approval. We aimed to develop a machine learning algorithm (RESOLVED2) to predict drug development outcome, which could support early go/no-go decisions after P1CTs by better selection of drugs suitable for further development. METHODS PubMed abstracts of P1CTs reporting on ANAs were used together with pharmacologic data from the DrugBank5.0 database to model time to US Food and Drug Administration (FDA) approval (FDA approval-free survival) since the first P1CT publication. The RESOLVED2 model was trained with machine learning methods. Its performance was evaluated on an independent test set with weighted concordance index (IPCW). RESULTS We identified 462 ANAs from PubMed that matched with DrugBank5.0 (P1CT publication dates 1972 to 2017). Among 1,411 variables, 28 were used by RESOLVED2 to model the FDA approval-free survival, with an IPCW of 0.89 on the independent test set. RESOLVED2 outperformed a model that was based on efficacy/toxicity (IPCW, 0.69). In the test set at 6 years of follow-up, 73% (95% CI, 49% to 86%) of drugs predicted to be approved were approved, whereas 92% (95% CI, 87% to 98%) of drugs predicted to be nonapproved were still not approved (log-rank P < .001). A predicted approved drug was 16 times more likely to be approved than a predicted nonapproved drug (hazard ratio, 16.4; 95% CI, 8.40 to 32.2). CONCLUSION As soon as P1CT completion, RESOLVED2 can predict accurately the time to FDA approval. We provide the proof of concept that drug development outcome can be predicted by machine learning strategies.


2014 ◽  
Vol 20 (22) ◽  
pp. 5663-5671 ◽  
Author(s):  
Victor Moreno García ◽  
David Olmos ◽  
Carlos Gomez-Roca ◽  
Philippe A. Cassier ◽  
Rafael Morales-Barrera ◽  
...  

2011 ◽  
Vol 29 (15_suppl) ◽  
pp. 3084-3084 ◽  
Author(s):  
P. A. Cassier ◽  
V. Moreno Garcia ◽  
C. Gomez-Roca ◽  
D. Olmos ◽  
R. Morales ◽  
...  

2016 ◽  
Vol 34 (4) ◽  
pp. 369-374 ◽  
Author(s):  
Randy F. Sweis ◽  
Michael W. Drazer ◽  
Mark J. Ratain

Purpose The use of biopsy-derived pharmacodynamic biomarkers is increasing in early-phase clinical trials. It remains unknown whether drug development is accelerated or enhanced by their use. We examined the impact of biopsy-derived pharmacodynamic biomarkers on subsequent drug development through a comprehensive analysis of phase I oncology studies from 2003 to 2010 and subsequent publications citing the original trials. Methods We conducted a search to identify and examine publications of phase I oncology studies including the use of biopsy-derived pharmacodynamic biomarkers between 2003 and 2010. Characteristics of those studies were extracted and analyzed, along with outcomes from the biomarker data. We then compiled and reviewed publications of subsequent phase II and III trials citing the original phase I biomarker studies to determine the impact on drug development. Results We identified 4,840 phase I oncology publications between 2003 and 2010. Seventy-two studies included a biopsy-derived pharmacodynamic biomarker. The proportion of biomarker studies including nondiagnostic biopsies increased over time (P = .002). A minimum of 1,873 tumor biopsies were documented in the 72 studies, 12 of which reported a statistically significant biomarker result. Thirty-three percent of studies (n = 24) were referenced by subsequent publications specifically with regard to the biomarkers. Only five positive biomarker studies were cited subsequently, and maximum tolerated dose was used for subsequent drug development in all cases. Conclusion Despite their increased use, the impact of biopsy-derived pharmacodynamic biomarkers in phase I oncology studies on subsequent drug development remains uncertain. No impact on subsequent dose or schedule was demonstrated. This issue requires further evaluation, given the risk and cost of such studies.


Sign in / Sign up

Export Citation Format

Share Document