scholarly journals Clinical Utility of GlioSeq Next-Generation Sequencing Test in Pediatric and Young Adult Patients With Brain Tumors

2019 ◽  
Vol 78 (8) ◽  
pp. 694-702
Author(s):  
Somak Roy ◽  
Sameer Agnihotri ◽  
Soufiane El Hallani ◽  
Wayne L Ernst ◽  
Abigail I Wald ◽  
...  

Abstract Brain tumors are the leading cause of death in children. Establishing an accurate diagnosis and therapy is critical for patient management. This study evaluated the clinical utility of GlioSeq, a next-generation sequencing (NGS) assay, for the diagnosis and management of pediatric and young adult patients with brain tumors. Between May 2015 and March 2017, 142 consecutive brain tumors were tested using GlioSeq v1 and subset using GlioSeq v2. Out of 142 samples, 63% were resection specimens and 37% were small stereotactic biopsies. GlioSeq sequencing was successful in 100% and 98.6% of the cases for the detection of mutations and copy number changes, and gene fusions, respectively. Average turnaround time was 8.7 days. Clinically significant genetic alterations were detected in 95%, 66.6%, and 66.1% of high-grade gliomas, medulloblastomas, and low-grade gliomas, respectively. GlioSeq enabled molecular-based stratification in 92 (65%) cases by specific molecular subtype assignment (70, 76.1%), substantiating a neuropathologic diagnosis (18, 19.6%), and diagnostic recategorization (4, 4.3%). Fifty-seven percent of the cases harbored therapeutically actionable findings. GlioSeq NGS analysis offers rapid detection of a wide range of genetic alterations across a spectrum of pediatric brain tumors using formalin-fixed, paraffin-embedded specimens and facilitates integrated molecular-morphologic classification and personalized management of pediatric brain tumors.

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii469-iii469
Author(s):  
Subhi Talal Younes ◽  
Amanda Boudreaux ◽  
Kristin Weaver ◽  
Cynthia Karlson ◽  
Betty Herrington

Abstract INTRODUCTION Next generation sequencing (NGS) is an emerging technology which allows for in-depth analysis of pediatric brain tumors. NGS has particular use in the context of ambiguous or aggressive neoplasms, where it can be leveraged to discover novel drivers, inform pathologic classification, and direct targeted therapies. OBJECTIVE The objective of this case series was to utilize NGS technology to illuminate the biology of aggressive brain tumors with ambiguous pathologic features and clinically aggressive behavior. METHODS FFPE tumor tissue and matched germline DNA were subjected to whole exome sequencing (WES). Data were analyzed according to the GATK pipeline. RESULTS The first case is a 6-year-old male who presented with innumerable foci of leptomeningeal nodules throughout the neuroaxis. Original pathology was CNS embryonal tumor. WES identified loss of chromosome 1p and 16q with gain of 1q and amplification of MYC and OTX2 loci (cytogenetic aberrations characteristic of group 3 medulloblastoma) and a deleterious mutation in BCL7B, a known tumor suppressor gene. The second case is a 2-year-old female who presented with a parietal lobe mass diagnosed as high grade neuroepithelial tumor with C11orf95 translocation, but no RELA fusion. WES revealed loss of small region of chromosome 2p and mutations in IDH3G, TRAF2, and JMJD1C, suggesting novel targets for further study. CONCLUSIONS In both cases, NGS studies were able to shed light on the underlying tumor biology and/or refine the pathologic diagnosis. These data underscore the utility of applying NGS technology to study the biology of pediatric brain tumors.


2018 ◽  
Vol 20 (suppl_2) ◽  
pp. i182-i183
Author(s):  
Joanna Trubicka ◽  
Malgorzata Rydzanicz ◽  
Iwona Filipek ◽  
Piotr Iwanowski ◽  
Wieslawa Grajkowska ◽  
...  

Oncoscience ◽  
2015 ◽  
Vol 2 (7) ◽  
pp. 646-658 ◽  
Author(s):  
Vivek Subbiah ◽  
Manojkumar Bupathi ◽  
Shumei Kato ◽  
Andrew Livingston ◽  
John Slopis ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1223-1223
Author(s):  
J. R. Marques Soares ◽  
M. Antolin Mate ◽  
E. Garcia Arumi ◽  
E. Tizzano Ferrari ◽  
S. Bujan Rivas

Background:Systemic autoinflammatory diseases (sAID) are a group of conditions with recurrent episodes of inflammation in absence of infection or autoimmune response. Its physiopathology mainly lies on mono/poligenic mutations involving genes related to the innate immune system response. Next Generation Sequencing (NGS) platformss have been a big step forward on sAID diagnosis, although a clinical and genetic correlation is still needed.Objectives:To review the sAID related gene panel variants identified using NGS sAID gene panel on a cohort of adult patients screened for sAID from a referral third-level hospital.To correlate genetic and clinical findings for sAID related variants identified in order to the clinical suspicion diagnosis of sAID.Methods:A retrospective review of a cohort of adult (≥ 16 yo) patients with available NGS sAID related gene panel (MiSeq Illumina sequencing platform including intron and exon variants from up to 17 sAID genes, with coverage depth > x100) among 2014 and 2019 was performed.Demographic, clinical and genetic data were collected in a database.Genetic variants were classified according to the American College of Medical Genetics/Association for Molecular Pathology classification as benign/likely benign/variable of unknown significance (VUS)/likely pathogenic/pathogenic. In case of polymorphisms or lack of genetic data, the variants were named as unclassified.A description of the cohort and an analysis of the correlation assessment between clinical data and genetic findings were performed.Results:246 out of 299 (82%) patients with NGS sAID gene panel had clinical data available. 170/246 (69%) were adult patients. The medium age was 48 yo, and the M/F ratio was 2.46. 87/170 (51%) adult patients presented 122 variants involving sAID genes (60/87 patients with a single variant). All the variants out of 7 seven were heterozygous variants.Variants were classified according to ACMG/AMP as follow: pathogenic/probably pathogenic: 22/122 (18%), unknown significance: 74/122 (60.6%), benign/probably benign: 6/122 (4.91%). 20/122 (16.4%) were unclassified variants or polymorphisms.The most frequent variants identified involved MEFV (54/122), NOD2/CARD15 (18/122) and TNFRSF1A (17/122 including 12 p.Arg121Gln variants) genes.37/122 (30%) variants correlated with the clinical picture in 33 patients, allowing to confirm the suspected diagnosis. Among the 122 variants, 7 not previously communicated variants were identified.No somatic variants were found.Conclusion:NGS sAID related gene panel is a useful tool for sAID diagnosis. In this cohort of 170 adult patients from a referral third-level hospital, genetic tests identified sAID related variants in almost half of them.20% of patients who underwent genetic NGS sAID related gene panel studies were finally diagnosed with sAID.The identification of a genetic variant (even pathogenic / likely pathogenic variant) is not diagnostic for sAID if there is not a suggestive clinical picture.Despite genetic findings, a careful evaluation of clinical – genetic correlation is needed to confirm the suspicion diagnosis, especially for low penetrance variants like TNFRSF1A p. Arg121Gln.References:Diagnostic utility of a targeted next-generation sequencing gene panel in the clinical suspicion of systemic autoinflammatory diseases: a multi-center study. Karacan I, Balamir A, Uğurlu S, et al. . Rheumatol Int. 2019 May;39(5):911-919. doi: 10.1007/s00296-019-04252-5. Epub 2019 Feb 19.Disclosure of Interests:None declared


Author(s):  
Edit Porpaczy ◽  
Wolfgang R. Sperr ◽  
Renate Thalhammer ◽  
Gerlinde Mitterbauer-Hohendanner ◽  
Leonhard Müllauer ◽  
...  

AbstractMixed phenotype acute leukemia (MPAL) is an uncommon disease characterized by currently only limited knowledge concerning biology, clinical presentation, and treatment outcome. We here describe a most unusual case of simultaneous occurrence of T-lymphoblastic lymphoma in cervical and mediastinal lymph nodes and acute myeloid leukemia in the bone marrow (BM) successfully treated with allogeneic stem cell transplantation (SCT). Although the blasts in both locations showed additional aberrant expression of other lineage markers (even B-cell markers), diagnostic criteria of MPAL were not fulfilled either in the LN or in the BM. We performed next generation sequencing (NGS) with the objective to look for common genetic aberrations in both tissues. Histology, immunohistochemistry, flow cytometry, AML-associated genetic alterations (FLT3, NPM1, KIT D816V, CEPBA), and clonal T-cell receptor β and γ gene rearrangements were performed according to routine diagnostic workflows. Next generation sequencing and Sanger sequencing were additionally performed in BM and LN. Somatic mutation in the EZH2 gene (p.(Arg684Cys)) was detected in the BM by NGS, and the same mutation was found in the LN. Since an identical genetic aberration (EZH2 mutation) was detected in both locations, a common progenitor with regional dependent differentiation may be involved.


Sign in / Sign up

Export Citation Format

Share Document