scholarly journals A Moving Target—Vancomycin Therapeutic Monitoring

2020 ◽  
Vol 9 (4) ◽  
pp. 474-478
Author(s):  
Alaina N Burns ◽  
Jennifer L Goldman

Abstract Therapeutic drug monitoring (TDM) has been a common practice to optimize efficacy and safety of vancomycin. While vancomycin trough-only TDM has widely been integrated into pediatric clinical practice since 2009, recently updated vancomycin TDM guidelines published in March 2020 recommend area under the curve (AUC) based TDM for vancomycin instead of trough-only TDM. In this review, we discuss the rationale behind the change in TDM recommendations, describe two approaches for calculating vancomycin AUC in clinical practice, and address considerations for integrating vancomycin AUC TDM into pediatric clinical practice. Our primary goal is to provide pediatric clinicians with a resource for implementing vancomycin AUC monitoring into clinical care.

2020 ◽  
Vol 5 (4) ◽  
pp. 738-761 ◽  
Author(s):  
Adriano Taddeo ◽  
Denis Prim ◽  
Elena-Diana Bojescu ◽  
Jean-Manuel Segura ◽  
Marc E Pfeifer

Abstract Background Immunosuppressive drugs (ISD) are an essential tool in the treatment of transplant rejection and immune-mediated diseases. Therapeutic drug monitoring (TDM) for determination of ISD concentrations in biological samples is an important instrument for dose personalization for improving efficacy while reducing side effects. While currently ISD concentration measurements are performed at specialized, centralized facilities, making the process complex and laborious for the patient, various innovative technical solutions have recently been proposed for bringing TDM to the point-of-care (POC). Content In this review, we evaluate current ISD-TDM and its value, limitations, and proposed implementations. Then, we discuss the potential of POC-TDM in the era of personalized medicine, and provide an updated review on the unmet needs and available technological solutions for the development of POC-TDM devices for ISD monitoring. Finally, we provide concrete suggestions for the generation of a meaningful and more patient-centric process for ISD monitoring. Summary POC-based ISD monitoring may improve clinical care by reducing turnaround time, by enabling more frequent measurements in order to obtain meaningful pharmacokinetic data (i.e., area under the curve) faster reaction in case of problems and by increasing patient convenience and compliance. The analysis of the ISD-TDM field prompts the evolution of POC testing toward the development of fully integrated platforms able to support clinical decision-making. We identify 4 major areas requiring careful combined implementation: patient usability, data meaningfulness, clinicians’ acceptance, and cost-effectiveness.


2021 ◽  
Vol 14 ◽  
pp. 175628482199990
Author(s):  
Sonia Facchin ◽  
Andrea Buda ◽  
Romilda Cardin ◽  
Nada Agbariah ◽  
Fabiana Zingone ◽  
...  

Anti-drug antibodies can interfere with the activity of anti-tumor necrosis factor (TNF) agents by increasing drug clearance via direct neutralization. The presence of anti-drug antibodies is clinically relevant when trough drug concentrations are undetectable or sub-therapeutic. However, traditional immunoassay is not easily and rapidly accessible, making the translation of the results into treatment adjustment difficult. The availability of a point-of-care (POC) test for therapeutic drug monitoring (TDM) might represent an important step forward for improving the management of inflammatory bowel disease (IBD) patients in clinical practice. In this pilot study, we compared the results obtained with POC tests with those obtained by enzyme-linked immunosorbent assay (ELISA) in a group of IBD patients treated with Infliximab (IFX). We showed that POC test can reliably detect presence of antibody-to-IFX with 100% of specificity and 76% sensitivity, in strong agreement with the ELISA test ( k-coefficient = 0.84).


1989 ◽  
Vol 2 (6) ◽  
pp. 403-415 ◽  
Author(s):  
Randall D. Seifert

The therapeutic monitoring of patients who take antipsychotic drugs can be both challenging and rewarding. Antipsychotics have been in clinical use for over 30 years; yet, their complex pharmacology is not fully understood and parallels our infant knowledge of human brain chemistry. The art of successful therapeutic drug monitoring depends on the clinician's knowledge of basic pharmacology, an understanding of psychiatric disorders, and a sensitivity for careful patient observation. In addition, a thorough history, well thought out goals, and reasonable recovery expectations are essential. Antipsychotic drugs are never curative and should be used judiciously for indications where positive results outweigh the risks of adverse effects. This article will provide the reader with sound, practical knowledge of how to monitor these drugs in any clinical setting. © 1989 by W.B. Saunders Company.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 114
Author(s):  
Justine Heitzmann ◽  
Yann Thoma ◽  
Romain Bricca ◽  
Marie-Claude Gagnieu ◽  
Vincent Leclerc ◽  
...  

Daptomycin is a candidate for therapeutic drug monitoring (TDM). The objectives of this work were to implement and compare two pharmacometric tools for daptomycin TDM and precision dosing. A nonparametric population PK model developed from patients with bone and joint infection was implemented into the BestDose software. A published parametric model was imported into Tucuxi. We compared the performance of the two models in a validation dataset based on mean error (ME) and mean absolute percent error (MAPE) of individual predictions, estimated exposure and predicted doses necessary to achieve daptomycin efficacy and safety PK/PD targets. The BestDose model described the data very well in the learning dataset. In the validation dataset (94 patients, 264 concentrations), 21.3% of patients were underexposed (AUC24h < 666 mg.h/L) and 31.9% of patients were overexposed (Cmin > 24.3 mg/L) on the first TDM occasion. The BestDose model performed slightly better than the model in Tucuxi (ME = −0.13 ± 5.16 vs. −1.90 ± 6.99 mg/L, p < 0.001), but overall results were in agreement between the two models. A significant proportion of patients exhibited underexposure or overexposure to daptomycin after the initial dosage, which supports TDM. The two models may be useful for model-informed precision dosing.


2018 ◽  
Vol 64 (7-8) ◽  
pp. 717-724
Author(s):  
Kristýna Zahálková ◽  
Aleš Chrdle ◽  
Olga Dvořáčková ◽  
Marie Kašparová ◽  
Magdalena Horníková ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document