scholarly journals FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures

2020 ◽  
Vol 71 (5) ◽  
pp. 1694-1705 ◽  
Author(s):  
Birte Schwarz ◽  
Petra Bauer

Abstract Iron (Fe) is vital for plant growth. Plants balance the beneficial and toxic effects of this micronutrient, and tightly control Fe uptake and allocation. Here, we review the role of the basic helix–loop–helix (bHLH) transcription factor FIT (FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) in Fe acquisition. FIT is not only essential, it is also a central regulatory hub in root cells to steer and adjust the rate of Fe uptake by the root in a changing environment. FIT regulates a subset of root Fe deficiency (–Fe) response genes. Based on a combination of co-expression network and FIT-dependent transcriptome analyses, we defined a set of FIT-dependent and FIT-independent gene expression signatures and co-expression clusters that encode specific functions in Fe regulation and Fe homeostasis. These gene signatures serve as markers to integrate novel regulatory factors and signals into the –Fe response cascade. FIT forms a complex with bHLH subgroup Ib transcription factors. Furthermore, it interacts with key regulators from different signaling pathways that either activate or inhibit FIT function to adjust Fe acquisition to growth and environmental constraints. Co-expression clusters and FIT protein interactions suggest a connection of –Fe with ABA responses and root cell elongation processes that can be explored in future studies.

2019 ◽  
Author(s):  
Birte Schwarz ◽  
Christina B. Azodi ◽  
Shin-Han Shiu ◽  
Petra Bauer

AbstractIron (Fe) is a key cofactor in many cellular redox processes, including respiration and photosynthesis. Plant Fe deficiency (-Fe) activates a complex regulatory network which coordinates root Fe uptake and distribution to sink tissues, while avoiding over-accumulation of Fe and other metals to toxic levels. In Arabidopsis (Arabidopsis thaliana), FIT (FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR), a bHLH transcription factor (TF), is required for up-regulation of root Fe acquisition genes. However, other root and shoot -Fe-induced genes involved in Fe allocation and signaling are FIT-independent. The cis-regulatory code, i.e. the cis-regulatory elements (CREs) and their combinations that regulate plant -Fe-responses, remains largely elusive. Using Arabidopsis genome and transcriptome data, we identified over 100 putative CREs (pCREs) that were predictive of -Fe-induced up-regulation of genes in root tissue. We used large-scale in vitro TF binding data, association with FIT-dependent or FIT-independent co-expression clusters, positional bias, and evolutionary conservation to assess pCRE properties and possible functions. In addition to bHLH and MYB TFs, also B3, NAC, bZIP, and TCP TFs might be important regulators for -Fe responses. Our approach uncovered IDE1 (Iron Deficiency-responsive Element 1), a -Fe response CRE in grass species, to be conserved in regulating genes for biosynthesis of Fe-chelating compounds also in Arabidopsis. Our findings provide a comprehensive source of cis-regulatory information for -Fe-responsive genes, that advances our mechanistic understanding and informs future efforts in engineering plants with more efficient Fe uptake or transport systems.One sentence summary>100 putative cis-regulatory elements robustly predict Arabidopsis root Fe deficiency-responses in computational models, and shed light on the mechanisms of transcriptional regulation.


2020 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background Iron (Fe) deficiency is a common problem in citrus production. As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins have been shown to participate in the regulation of Fe homeostasis and a series of other biological and developmental processes in plants. However, this family of members in citrus and their functions in citrus Fe deficiency are still largely unknown. Results In this study, we identified a total of 128 CgbHLHs from pummelo ( Citrus grandis ) genome that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 27 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, several of CgbHLHs were identified as the key candidates that respond to iron deficiency. Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


2019 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins participate in regulating of a series of biological and developmental processes in plants. Although several bHLH genes of citrus have been identified and previously characterized, a large number of bHLH members are still unknown.Results In this study, we genome-widely identified a total of 128 CgbHLHs from pummelo (Citrus grandis) that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 37 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, 22 of CgbHLHs were identified as the key candidates that respond to iron deficiency.Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


2020 ◽  
Author(s):  
Gang Liang ◽  
Huimin Zhang ◽  
Yang Li ◽  
Mengna Pu ◽  
Yujie Yang ◽  
...  

ABSTRACTThere are two Fe-uptake strategies for maintaining Fe homeostasis in plants. As a special graminaceous plant, rice applies both strategies. However, it remains unclear how these two strategies are regulated in rice. IRON-RELATED BHLH TRANSCRIPTION FACTOR 2 (OsIRO2) is critical for regulating Fe uptake in rice. In this study, we identified an interacting partner of OsIRO2, Oryza sativa FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT), which encodes a bHLH transcription factor. The OsIRO2 protein is localized in the cytoplasm and nucleus, but OsFIT facilitates the accumulation of OsIRO2 in the nucleus. Loss-of-function mutations to OsFIT result in decreased Fe accumulation, severe Fe-deficiency symptoms, and disrupted expression of Fe-uptake genes. In contrast, OsFIT overexpression promotes Fe accumulation and the expression of Fe-uptake genes. Genetic analyses indicated that OsFIT and OsIRO2 function in the same genetic node. Further analysis suggested that OsFIT and OsIRO2 form a functional transcription activation complex to initiate the expression of Fe-uptake genes. Our findings provide a mechanism understanding of how rice maintains Fe homeostasis.One-sentence summaryOsFIT interacts with and facilitates the accumulation of OsIRO2 in the nucleus where the OsFIT-OsIRO2 transcription complex initiates the transcription of Fe deficiency responsive genes.


2019 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background Iron (Fe) deficiency is a common problem in citrus production. As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins have been shown to participate in the regulation of Fe homeostasis and a series of other biological and developmental processes in plants. However, this family of members in citrus and their functions in citrus Fe deficiency are still largely unknown. Results In this study, we identified a total of 128 CgbHLHs from pummelo ( Citrus grandis ) genome that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 27 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, several of CgbHLHs were identified as the key candidates that respond to iron deficiency. Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


2020 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background Iron (Fe) deficiency is a common problem in citrus production. As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins have been shown to participate in the regulation of Fe homeostasis and a series of other biological and developmental processes in plants. However, this family of members in citrus and their functions in citrus Fe deficiency are still largely unknown. Results In this study, we identified a total of 128 CgbHLHs from pummelo ( Citrus grandis ) genome that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 27 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, several of CgbHLHs were identified as the key candidates that respond to iron deficiency. Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2513-2523 ◽  
Author(s):  
J.C. Cross ◽  
M.L. Flannery ◽  
M.A. Blanar ◽  
E. Steingrimsson ◽  
N.A. Jenkins ◽  
...  

Trophoblast cells are the first lineage to form in the mammalian conceptus and mediate the process of implantation. We report the cloning of a basic helix-loop-helix (bHLH) transcription factor gene, Hxt, that is expressed in early trophoblast and in differentiated giant cells. A separate gene, Hed, encodes a related protein that is expressed in maternal deciduum surrounding the implantation site. Overexpression of Hxt in mouse blastomeres directed their development into trophoblast cells in blastocysts. In addition, overexpression of Hxt induced the differentiation of rat trophoblast (Rcho-1) stem cells as assayed by changes in cell adhesion and by activation of the placental lactogen-I gene promoter, a trophoblast giant cell-specific gene. In contrast, the negative HLH regulator, Id-1, inhibited Rcho-1 differentiation and placental lactogen-I transcription. These data demonstrate a role for HLH factors in regulating trophoblast development and indicate a positive role for Hxt in promoting the formation of trophoblast giant cells.


2019 ◽  
Vol 32 (12) ◽  
pp. 1614-1622 ◽  
Author(s):  
Jung-Gun Kim ◽  
Mary Beth Mudgett

Effector-dependent manipulation of host transcription is a key virulence mechanism used by Xanthomonas species causing bacterial spot disease in tomato and pepper. Transcription activator-like (TAL) effectors employ novel DNA-binding domains to directly activate host transcription, whereas the non-TAL effector XopD uses a small ubiquitin-like modifier (SUMO) protease activity to represses host transcription. The targets of TAL and non-TAL effectors provide insight to the genes governing susceptibility and resistance during Xanthomonas infection. In this study, we investigated the extent to which the X. euvesicatoria non-TAL effector strain Xe85-10 activates tomato transcription to gain new insight to the transcriptional circuits and virulence mechanisms associated with Xanthomonas euvesicatoria pathogenesis. Using transcriptional profiling, we identified a putative basic helix-loop-helix (bHLH) transcription factor, bHLH132, as a pathogen-responsive gene that is moderately induced by microbe-associated molecular patterns and defense hormones and is highly induced by XopD during X. euvesicatoria infection. We also found that activation of bHLH132 transcription requires the XopD SUMO protease activity. Silencing bHLH132 mRNA expression results in stunted tomato plants with enhanced susceptibility to X. euvesicatoria infection. Our work suggests that bHLH132 is required for normal vegetative growth and development as well as resistance to X. euvesicatoria. It also suggests new transcription-based models describing XopD virulence and recognition in tomato.


2019 ◽  
Vol 85 (8) ◽  
Author(s):  
Miao Zhuang ◽  
Zhi-Min Zhang ◽  
Long Jin ◽  
Bao-Teng Wang ◽  
Yasuji Koyama ◽  
...  

ABSTRACTBasic-region helix-loop-helix (bHLH) proteins are a superfamily of transcription factors that are often involved in the control of growth and differentiation. Recently, it was reported that the bHLH transcription factor DevR is involved in both asexual and sexual development inAspergillus nidulansand regulates the conidial melanin production inAspergillus fumigatus. In this study, we identified and characterized anAspergillus oryzaegene that showed high similarity withdevRofA. nidulansandA. fumigatus(AodevR). In the AodevR-disrupted strain, growth was delayed and the number of conidia was decreased on Czapek-Dox (CD) minimal agar plates, but the conidiation was partially recovered by adding 0.6 M KCl. Simultaneously, the overexpression of AodevRwas induced and resulted in extremely poor growth when the carbon source changed from glucose to polysaccharide (dextrin) in the CD agar plate. Scanning electron microscopy (SEM) indicated that the overexpression of AodevRresulted in extremely thin aberrant hyphal morphology. Conversely, the deletion of AodevRresulted in thicker hyphae and in more resistance to Congo red relative to the control strain. Quantitative reverse transcriptase PCR (RT-PCR) further indicated that AoDevR significantly affects chitin and starch metabolism, and importantly, the overexpression of AodevRinhibited the expression of genes related to starch degradation. A yeast one-hybrid assay suggested that the DevR protein possibly interacted with the promoter ofamyR, which encodes a transcription factor involved in amylase production. Importantly, AoDevR is involved in polysaccharide metabolism and affects the growth of theA. oryzaestrain.IMPORTANCEAspergillus oryzaeis an industrially important filamentous fungus; therefore, a clear understanding of its polysaccharide metabolism and utilization is very important for its industrial utilization. In this study, we revealed that the basic-region helix-loop-helix (bHLH) transcription factor AoDevR is importantly involved in chitin and starch metabolism inA. oryzae. The overexpression of AodevRstrongly suppressed the expression of amylase-related genes. The results of a yeast one-hybrid assay suggested that the DevR protein potentially interacts with the promoter ofamyR, which encodes a transcription factor involved in amylase production and starch utilization. This study provides new insight for further revealing the regulation mechanism of amylase production inA. oryzae.


2020 ◽  
Vol 71 (20) ◽  
pp. 6311-6327
Author(s):  
Lincheng Zhang ◽  
Jing Kang ◽  
Qiaoli Xie ◽  
Jun Gong ◽  
Hui Shen ◽  
...  

Abstract Ethylene signaling pathways regulate several physiological alterations that occur during tomato fruit ripening, such as changes in colour and flavour. The mechanisms underlying the transcriptional regulation of genes in these pathways remain unclear, although the role of the MADS-box transcription factor RIN has been widely reported. Here, we describe a bHLH transcription factor, SlbHLH95, whose transcripts accumulated abundantly in breaker+4 and breaker+7 fruits compared with rin (ripening inhibitor) and Nr (never ripe) mutants. Moreover, the promoter activity of SlbHLH95 was regulated by RIN in vivo. Suppression of SlbHLH95 resulted in reduced sensitivity to ethylene, decreased accumulation of total carotenoids, and lowered glutathione content, and inhibited the expression of fruit ripening- and glutathione metabolism-related genes. Conversely, up-regulation of SlbHLH95 in wild-type tomato resulted in higher sensitivity to ethylene, increased accumulation of total carotenoids, slightly premature ripening, and elevated accumulation of glutathione, soluble sugar, and starch. Notably, overexpression of SlbHLH95 in rin led to the up-regulated expression of fruit ripening-related genes (FUL1, FUL2, SAUR69, ERF4, and CNR) and multiple glutathione metabolism-related genes (GSH1, GSH2, GSTF1, and GSTF5). These results clarified that SlbHLH95 participates in the regulation of fruit ripening and affects ethylene sensitivity and multiple metabolisms targeted by RIN in tomato.


Sign in / Sign up

Export Citation Format

Share Document