scholarly journals FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT) interacts with OsIRO2 to regulate iron homeostasis

2020 ◽  
Author(s):  
Gang Liang ◽  
Huimin Zhang ◽  
Yang Li ◽  
Mengna Pu ◽  
Yujie Yang ◽  
...  

ABSTRACTThere are two Fe-uptake strategies for maintaining Fe homeostasis in plants. As a special graminaceous plant, rice applies both strategies. However, it remains unclear how these two strategies are regulated in rice. IRON-RELATED BHLH TRANSCRIPTION FACTOR 2 (OsIRO2) is critical for regulating Fe uptake in rice. In this study, we identified an interacting partner of OsIRO2, Oryza sativa FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT), which encodes a bHLH transcription factor. The OsIRO2 protein is localized in the cytoplasm and nucleus, but OsFIT facilitates the accumulation of OsIRO2 in the nucleus. Loss-of-function mutations to OsFIT result in decreased Fe accumulation, severe Fe-deficiency symptoms, and disrupted expression of Fe-uptake genes. In contrast, OsFIT overexpression promotes Fe accumulation and the expression of Fe-uptake genes. Genetic analyses indicated that OsFIT and OsIRO2 function in the same genetic node. Further analysis suggested that OsFIT and OsIRO2 form a functional transcription activation complex to initiate the expression of Fe-uptake genes. Our findings provide a mechanism understanding of how rice maintains Fe homeostasis.One-sentence summaryOsFIT interacts with and facilitates the accumulation of OsIRO2 in the nucleus where the OsFIT-OsIRO2 transcription complex initiates the transcription of Fe deficiency responsive genes.

2020 ◽  
Vol 71 (5) ◽  
pp. 1694-1705 ◽  
Author(s):  
Birte Schwarz ◽  
Petra Bauer

Abstract Iron (Fe) is vital for plant growth. Plants balance the beneficial and toxic effects of this micronutrient, and tightly control Fe uptake and allocation. Here, we review the role of the basic helix–loop–helix (bHLH) transcription factor FIT (FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) in Fe acquisition. FIT is not only essential, it is also a central regulatory hub in root cells to steer and adjust the rate of Fe uptake by the root in a changing environment. FIT regulates a subset of root Fe deficiency (–Fe) response genes. Based on a combination of co-expression network and FIT-dependent transcriptome analyses, we defined a set of FIT-dependent and FIT-independent gene expression signatures and co-expression clusters that encode specific functions in Fe regulation and Fe homeostasis. These gene signatures serve as markers to integrate novel regulatory factors and signals into the –Fe response cascade. FIT forms a complex with bHLH subgroup Ib transcription factors. Furthermore, it interacts with key regulators from different signaling pathways that either activate or inhibit FIT function to adjust Fe acquisition to growth and environmental constraints. Co-expression clusters and FIT protein interactions suggest a connection of –Fe with ABA responses and root cell elongation processes that can be explored in future studies.


2020 ◽  
Vol 62 (5) ◽  
pp. 668-689 ◽  
Author(s):  
Gang Liang ◽  
Huimin Zhang ◽  
Yang Li ◽  
Mengna Pu ◽  
Yujie Yang ◽  
...  

2019 ◽  
Author(s):  
Birte Schwarz ◽  
Christina B. Azodi ◽  
Shin-Han Shiu ◽  
Petra Bauer

AbstractIron (Fe) is a key cofactor in many cellular redox processes, including respiration and photosynthesis. Plant Fe deficiency (-Fe) activates a complex regulatory network which coordinates root Fe uptake and distribution to sink tissues, while avoiding over-accumulation of Fe and other metals to toxic levels. In Arabidopsis (Arabidopsis thaliana), FIT (FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR), a bHLH transcription factor (TF), is required for up-regulation of root Fe acquisition genes. However, other root and shoot -Fe-induced genes involved in Fe allocation and signaling are FIT-independent. The cis-regulatory code, i.e. the cis-regulatory elements (CREs) and their combinations that regulate plant -Fe-responses, remains largely elusive. Using Arabidopsis genome and transcriptome data, we identified over 100 putative CREs (pCREs) that were predictive of -Fe-induced up-regulation of genes in root tissue. We used large-scale in vitro TF binding data, association with FIT-dependent or FIT-independent co-expression clusters, positional bias, and evolutionary conservation to assess pCRE properties and possible functions. In addition to bHLH and MYB TFs, also B3, NAC, bZIP, and TCP TFs might be important regulators for -Fe responses. Our approach uncovered IDE1 (Iron Deficiency-responsive Element 1), a -Fe response CRE in grass species, to be conserved in regulating genes for biosynthesis of Fe-chelating compounds also in Arabidopsis. Our findings provide a comprehensive source of cis-regulatory information for -Fe-responsive genes, that advances our mechanistic understanding and informs future efforts in engineering plants with more efficient Fe uptake or transport systems.One sentence summary>100 putative cis-regulatory elements robustly predict Arabidopsis root Fe deficiency-responses in computational models, and shed light on the mechanisms of transcriptional regulation.


2021 ◽  
Vol 118 (39) ◽  
pp. e2109063118
Author(s):  
Yang Li ◽  
Cheng Kai Lu ◽  
Chen Yang Li ◽  
Ri Hua Lei ◽  
Meng Na Pu ◽  
...  

IRON MAN (IMA) peptides, a family of small peptides, control iron (Fe) transport in plants, but their roles in Fe signaling remain unclear. BRUTUS (BTS) is a potential Fe sensor that negatively regulates Fe homeostasis by promoting the ubiquitin-mediated degradation of bHLH105 and bHLH115, two positive regulators of the Fe deficiency response. Here, we show that IMA peptides interact with BTS. The C-terminal parts of IMA peptides contain a conserved BTS interaction domain (BID) that is responsible for their interaction with the C terminus of BTS. Arabidopsis thaliana plants constitutively expressing IMA genes phenocopy the bts-2 mutant. Moreover, IMA peptides are ubiquitinated and degraded by BTS. bHLH105 and bHLH115 also share a BID, which accounts for their interaction with BTS. IMA peptides compete with bHLH105/bHLH115 for interaction with BTS, thereby inhibiting the degradation of these transcription factors by BTS. Genetic analyses suggest that bHLH105/bHLH115 and IMA3 have additive roles and function downstream of BTS. Moreover, the transcription of both BTS and IMA3 is activated directly by bHLH105 and bHLH115 under Fe-deficient conditions. Our findings provide a conceptual framework for understanding the regulation of Fe homeostasis: IMA peptides protect bHLH105/bHLH115 from degradation by sequestering BTS, thereby activating the Fe deficiency response.


2021 ◽  
Author(s):  
Ranjana Shee ◽  
Soumi Ghosh ◽  
Pinki Khan ◽  
Salman Sahid ◽  
Chandan Roy ◽  
...  

Glutathione (GSH) is a ubiquitous molecule known to regulate various physiological and developmental phenomena in plants. Recently, its involvement in regulating iron (Fe) deficiency response was established in Arabidopsis. However, the role of GSH in modulating subcellular Fe homeostasis remained elusive. In this study, we dissected the role of GSH in regulating Fe homeostasis in Arabidopsis shoots under Fe limited conditions. The two GSH depleted mutants, cad2-1 and pad2-1 displayed increased sensitivity to Fe deficiency with smaller rosette diameter and higher chlorosis level compared with the Col-0 plants. Interestingly, the expression of the vacuolar Fe exporters, AtNRAMP3 and AtNRAMP4, chloroplast Fe importer, AtPIC1, along with AtFer1 and AtIRT1 were significantly down-regulated in these mutants. The expression of these genes were up-regulated in response to exogenous GSH treatment while treatment with BSO, a GSH inhibitor, down-regulated their expression. Moreover, the mutants accumulated higher Fe content in the vacuole and lower in the chloroplast compared with Col-0 under Fe limited condition suggesting a role of GSH in modulating subcellular Fe homeostasis. This regulation was, further, found to involve a GSNO-dependent pathway. Promoter analysis revealed that GSH induced the transcription of these genes presumably via S-nitrosylation of different Fe responsive bHLH transcription factors.


2017 ◽  
Vol 68 (7) ◽  
pp. 1743-1755 ◽  
Author(s):  
Gang Liang ◽  
Huimin Zhang ◽  
Xiaoli Li ◽  
Qin Ai ◽  
Diqiu Yu

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 653
Author(s):  
Oscar Carey-Fung ◽  
Jesse T. Beasley ◽  
Alexander A. T. Johnson

Effective maintenance of plant iron (Fe) homoeostasis relies on a network of transcription factors (TFs) that respond to environmental conditions and regulate Fe uptake, translocation, and storage. The iron-related transcription factor 3 (IRO3), as well as haemerythrin motif-containing really interesting new gene (RING) protein and zinc finger protein (HRZ), are major regulators of Fe homeostasis in diploid species like Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L.), but remain uncharacterised in hexaploid bread wheat (Triticum aestivum L.). In this study, we have identified, annotated, and characterised three TaIRO3 homoeologs and six TaHRZ1 and TaHRZ2 homoeologs in the bread wheat genome. Protein analysis revealed that TaIRO3 and TaHRZ proteins contain functionally conserved domains for DNA-binding, dimerisation, Fe binding, or polyubiquitination, and phylogenetic analysis revealed clustering of TaIRO3 and TaHRZ proteins with other monocot IRO3 and HRZ proteins, respectively. Quantitative reverse-transcription PCR analysis revealed that all TaIRO3 and TaHRZ homoeologs have unique tissue expression profiles and are upregulated in shoot tissues in response to Fe deficiency. After 24 h of Fe deficiency, the expression of TaHRZ homoeologs was upregulated, while the expression of TaIRO3 homoeologs was unchanged, suggesting that TaHRZ functions upstream of TaIRO3 in the wheat Fe homeostasis TF network.


2021 ◽  
Author(s):  
Ning Zhang ◽  
Chloe Hecht ◽  
Xuepeng Sun ◽  
Zhangjun Fei ◽  
Gregory B Martin

Basic helix-loop-helix (bHLH) transcription factors constitute a superfamily in eukaryotes but their roles in plant immunity remain largely uncharacterized. We found that the transcript abundance in tomato leaves of one bHLH transcription factor-encoding gene, Nrd1 (negative regulator of resistance to DC3000 1), was significantly increased after treatment with the immunity-inducing flgII-28 peptide. Plants carrying a loss-of-function mutation in Nrd1 (Δnrd1) showed enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 although early pattern-triggered immunity responses such as generation of reactive oxygen species and activation of mitogen-activated protein kinases after treatment with flagellin-derived flg22 and flgII-28 peptides were unaltered compared to wild-type plants. An RNA-Seq analysis identified a gene, Agp1, whose expression is strongly suppressed in an Nrd1-dependent manner. Agp1 encodes an arabinogalactan protein and overexpression of the Agp1 gene in Nicotiana benthamiana led to ~10-fold less Pst growth compared to the control. These results suggest that the Nrd1 protein promotes tomato susceptibility to Pst by suppressing the defense gene Agp1. RNA-Seq also revealed that loss of Nrd1 function has no effect on the transcript abundance of immunity-associated genes including Bti9, Core, Fls2, Fls3 and Wak1 upon Pst inoculation, suggesting that the enhanced immunity observed in the Δnrd1 mutants is due to the activation of key PRR signaling components as well as loss of Nrd1-regulated suppression of Agp1.


2020 ◽  
Vol 522 (1) ◽  
pp. 233-239
Author(s):  
Yang-Yang Li ◽  
Xiao-Yan Sui ◽  
Jia-Shuo Yang ◽  
Xiao-Hua Xiang ◽  
Zun-Qiang Li ◽  
...  

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Min Zhao ◽  
Aiping Song ◽  
Peiling Li ◽  
Sumei Chen ◽  
Jiafu Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document