scholarly journals The CLE53–SUNN genetic pathway negatively regulates arbuscular mycorrhiza root colonization in Medicago truncatula

2020 ◽  
Vol 71 (16) ◽  
pp. 4972-4984 ◽  
Author(s):  
Magda Karlo ◽  
Clarissa Boschiero ◽  
Katrine Gram Landerslev ◽  
Gonzalo Sancho Blanco ◽  
Jiangqi Wen ◽  
...  

Abstract Plants and arbuscular mycorrhizal fungi (AMF) engage in mutually beneficial symbioses based on a reciprocal exchange of nutrients. The beneficial character of the symbiosis is maintained through a mechanism called autoregulation of mycorrhization (AOM). AOM includes root-to-shoot-to-root signaling; however, the molecular details of AOM are poorly understood. AOM shares many features of autoregulation of nodulation (AON) where several genes are known, including the receptor-like kinase SUPER NUMERIC NODULES (SUNN), root-to-shoot mobile CLAVATA3/ENDOSPERM SURROUNDING REGION (ESR)-RELATED (CLE) peptides, and the hydroxyproline O-arabinosyltransferase ROOT DETERMINED NODULATION1 (RDN1) required for post-translational peptide modification. In this work, CLE53 was identified to negatively regulate AMF symbiosis in a SUNN- and RDN1-dependent manner. CLE53 expression was repressed at low phosphorus, while it was induced by AMF colonization and high phosphorus. CLE53 overexpression reduced AMF colonization in a SUNN- and RDN1 dependent manner, while cle53, rdn1, and sunn mutants were more colonized than the wild type. RNA-sequencing identified 700 genes with SUNN-dependent regulation in AMF-colonized plants, providing a resource for future identification of additional AOM genes. Disruption of AOM genes in crops potentially constitutes a novel route for improving AMF-derived phosphorus uptake in agricultural systems with high phosphorus levels.

2020 ◽  
Author(s):  
Celine Mens ◽  
April H. Hastwell ◽  
Huanan Su ◽  
Peter M. Gresshoff ◽  
Ulrike Mathesius ◽  
...  

AbstractLegume plants form a symbiosis with N2-fixing soil rhizobia, resulting in new root organs called nodules that enable N2-fixation. Nodulation is a costly process that is tightly regulated by the host through Autoregulation of Nodulation (AON) and nitrate-dependent regulation of nodulation. Both pathways require legume-specific CLAVATA/ESR-related (CLE) peptides. Nitrogen-induced nodulation-suppressing CLE peptides have not previously been characterised in Medicago truncatula, with only rhizobia-induced MtCLE12 and MtCLE13 identified. Here, we report on novel peptides MtCLE34 and MtCLE35 in nodulation control pathways. The nodulation-suppressing CLE peptides of five legume species were classified into three clades based on sequence homology and phylogeny. This approached identified MtCLE34 and MtCLE35 and four new CLE peptide orthologues of Pisum sativum. Whereas MtCLE12 and MtCLE13 are induced by rhizobia, MtCLE34 and MtCLE35 respond to both rhizobia and nitrate. MtCLE34 was identified as a pseudogene lacking a functional CLE-domain. Overexpression of MtCLE12, MtCLE13 and MtCLE35 inhibits nodulation. Together, our findings indicate that MtCLE12 and MtCLE13 have a distinct role in AON, while MtCLE35 regulates nodule numbers in a rhizobia- and nitrate-dependent manner. MtCLE34 likely had a similar role to MtCLE35 but its function was lost due to a nonsense mutation resulting in the loss of the mature peptide.


2018 ◽  
Vol 156 (1) ◽  
pp. 46-58 ◽  
Author(s):  
Caixia Liu ◽  
Sabine Ravnskov ◽  
Fulai Liu ◽  
Gitte H. Rubæk ◽  
Mathias N. Andersen

AbstractDeficit irrigation (DI) improves water use efficiency (WUE), but the reduced water input often limits plant growth and nutrient uptake. The current study examined whether arbuscular mycorrhizal fungi (AMF) could alleviate abiotic stress caused by low phosphorus (P) fertilization and DI.A greenhouse experiment was conducted with potato grown with (P1) or without (P0) P fertilization, with AMF (M1+:Rhizophagus irregularisor M2+:Glomus proliferum) or AMF-free control (M−) and subjected to full irrigation (FI), DI or partial root-zone drying (PRD).Inoculation of M1+ and M2+ maintained or improved plant growth and P/nitrogen (N) uptake when subjected to DI/PRD and P0. However, the positive responses to AMF varied with P level and irrigation regime. Functional differences were found in ability of AMF species alleviating plant stress. The largest positive plant biomass response to M1+ and M2+ was found under FI, both at P1 and P0 (25% increase), while plant biomass response to M1+ and M2+ under DI/PRD (14% increase) was significantly smaller. The large growth response to AMF inoculation, particularly under FI, may relate to greater photosynthetic capacity and leaf area, probably caused by stimulation of plant P/N uptake and carbon partitioning toward roots and tubers. However, plant growth response to AMF was not related to the percentage of AMF root colonization. Arbuscular mycorrhizal fungi can maintain and improve P/N uptake, WUE and growth of plants both at high/low P levels and under FI/DI. If this is also the case under field conditions, it should be implemented for sustainable potato production.


1998 ◽  
Vol 14 (1) ◽  
pp. 47-61 ◽  
Author(s):  
BERNARD MOYERSOEN ◽  
IAN J. ALEXANDER ◽  
ALASTAIR H. FITTER

The relationship between mycorrhizal colonisation and phosphorus acquired by seedlings of the arbuscular mycorrhizal tree Oubanguia alata Bak f. (Scytopetalaceae) and the ectomycorrhizal tree Tetraberlinia moreliana Aubr. (Caesalpiniodeae) was evaluated at low and high inorganic phosphorus availability. AM colonisation was positively correlated with phosphorus uptake by O. alata at low, but not at high phosphorus availability. Seedlings growth was positively related to arbuscular mycorrhizal colonisation at both low and high phosphorus availability, suggesting that growth promotion by arbuscular mycorrhizas is not simply related to an increase of phosphorus uptake. In contrast, phosphorus uptake by T. moreliana was correlated with EM colonisation at both low and high phosphorus availability, but there was no relationship between growth and ectomycorrhizal colonisation. Promotion of phosphorus uptake by arbuscular mycorrhizas and ectomycorrhizas at low phosphorus availability is consistent with the co-occurrence of the two types of mycorrhiza in tropical rain forests where available soil phosphorus is low. However, ectomycorrhizal colonisation may also be of advantage where inputs of phosphorus rich litter raise the phosphorus status of the soil, as seen in the groves of ectomycorrhizal trees in Korup National Park, and may be one of the factors reinforcing local dominance by these trees.


1992 ◽  
Vol 28 (4) ◽  
pp. 433-442 ◽  
Author(s):  
Edwin Weber ◽  
Eckhard George ◽  
Douglas P. Beck ◽  
Mohan C. Saxena ◽  
Horst Marschner

SUMMARYInoculation with vesicular-arbuscular mycorrhizal fungi (VAMF) improved growth of chick-pea (Cicer arielinum L.) and doubled phosphorus (P) uptake at low and intermediate levels of P fertilization in a pot experiment on sterilized low-P calcareous soil. In field experiments at Tel Hadya, northern Syria, growth, shoot P concentration and seed yield of spring-sown chickpea remained unaffected by inoculation with VAMF or by P fertilization. The mycorrhizal infection of chickpea was high (approximately 75% of root length mycorrhizal at the flowering stage) irrespective of inoculation with VAMF or P fertilization and may ensure efficient P uptake under field conditions.


Sign in / Sign up

Export Citation Format

Share Document