Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China

2011 ◽  
Vol 63 (1) ◽  
pp. 13-24 ◽  
Author(s):  
M. Fan ◽  
J. Shen ◽  
L. Yuan ◽  
R. Jiang ◽  
X. Chen ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Yuanhong Zhang ◽  
Zonggui Xu ◽  
Jun Li ◽  
Rui Wang

Increasing planting density is an effective strategy for improving maize productivity, but grain yield does not increase linearly with the increase in plant density, especially in semiarid environments. However, how planting density regulates the integrated utilization of key input resources (i.e., radiation, water, and nutrients) to affect maize production is not clear. To evaluate the effects of planting density and cultivar on maize canopy structure, photosynthetic characteristics, yield, and resource use efficiency, we conducted a successive field experiment from 2013 to 2018 in Heyang County (Shaanxi Province, China) using three different cultivars [i.e., Yuyu22 (C1), Zhengdan958 (C2), and Xianyu335 (C3)] at four planting densities [i.e., 52,500 (D1), 67,500 (D2), 82,500 (D3), and 97,500 (D4) plants ha–1]. Increasing planting density significantly increased the leaf area index (LAI) and the amount of intercepted photosynthetically active radiation (IPAR), thereby promoting plant growth and crop productivity. However, increased planting density reduced plant photosynthetic capacity [net photosynthetic rate (Pn)], stomatal conductance (Gc), and leaf chlorophyll content. These alterations constitute key mechanisms underlying the decline in crop productivity and yield stability at high planting density. Although improved planting density increased IPAR, it did not promote higher resource use efficiency. Compared with the D1 treatment, the grain yield, precipitation use efficiency (PUE), radiation use efficiency (RUE), and nitrogen use efficiency (NUE) increased by 5.6–12.5%, 2.8–7.1%, and −2.1 to 1.6% in D2, D3, and D4 treatments, respectively. These showed that pursuing too high planting density is not a desirable strategy in the rainfed farming system of semiarid environments. In addition, density-tolerant cultivars (C2 and C3) showed better canopy structure and photosynthetic capacity and recorded higher yield stability and resource use efficiency. Together, these results suggest that growing density-tolerant cultivars at moderate planting density could serve as a promising approach for stabilizing grain yield and realizing the sustainable development of agriculture in semiarid regions.


2017 ◽  
Vol 213 ◽  
pp. 38-50 ◽  
Author(s):  
Michael Kermah ◽  
Angelinus C. Franke ◽  
Samuel Adjei-Nsiah ◽  
Benjamin D.K. Ahiabor ◽  
Robert C. Abaidoo ◽  
...  

Author(s):  
R. Ford Denison

This book proposes new approaches to improving agriculture based on the principles of evolutionary biology and natural selection. It argues that two popular approaches to improving agriculture, biotechnology and traditional plant breeding, have tended to ignore evolutionary tradeoffs—that is, cases where an evolutionary change that is positive in one context is negative in another—and that both of them would benefit from greater attention to evolution. Whether we focus on genetic improvement of crops or better management of agricultural ecosystems, the book emphasizes the need to identify (and sometimes accept) tradeoffs that constrained past evolution in order to find new solutions to agricultural problems. It also considers some of the challenges facing agriculture, such as resource-use efficiency and food security. This chapter provides an overview of the book.


2019 ◽  
Vol 11 (3) ◽  
Author(s):  
Ankur Chaudhary ◽  
Rajender Kumar Chhokar ◽  
Dharam Bir Yadav ◽  
Vinay Kumar Sindhu ◽  
Hari Ram ◽  
...  

2011 ◽  
Vol 3 (9) ◽  
pp. 532-534
Author(s):  
Ganeshkumar D Rede ◽  
◽  
Dr. S. J. Kakde Dr. S. J. Kakde ◽  
Vanita Khobarkar

The study was conducted using purposive cum random sampling technique and two hundred respondents comprised of 100 each borrowers and non-borrowers were selected from two block of district including marginal, small and medium categories of farm size. Primary data were collected through personal interview technique and required secondary information was taken from the record available at district and block level. Simple tabular and functional analysis and Garrett ranking were done to draw inferences. As per the result obtained from the study, no much difference was seen between the resource use efficiency of borrower and non-borrower farms and constraints faced by borrower. Since banana is a cash crop and it needs initial costs for its establishment, and after harvesting the crop regular source of income was generated by selling of suckers (seed) plant and its fruits. It’s by-product, leaves, etc. also used for various purposes. Minute inspection of the analysis showed that finance played important role for initiating the cultivation of banana crops showed the resource use efficiency that there is no considerable difference found on sample farms of borrower and non-borrower categories. Constraints faced by majority of the farmers were mainly delay in disbursement of loan and lack of the repayment period insufficient and improper management for withdraws on KCC.


Sign in / Sign up

Export Citation Format

Share Document