Neuropharmacology

2021 ◽  
pp. 215-224
Author(s):  
Amy Z. Crepeau

Medications used in the treatment of nervous system disorders typically modulate neurotransmitter function or action potential propagation and alter neurologic function. This chapter reviews the principles of pharmacokinetics, the major targets for drug action to provide a basis for understanding how medications exert their action, and disease-specific treatments. An understanding of the pharmacokinetic principles of neurologic medications is important for prescribing and ordering medication. Multiple routes of administration, including intravenous, sublingual, intramuscular, subcutaneous, rectal, oral, and transdermal, are available for delivery of neurologic medications.

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1346
Author(s):  
Lionel M. Broche ◽  
Karla D. Bustamante ◽  
Michael Pycraft Hughes

Increasingly complex multi-electrode arrays for the study of neurons both in vitro and in vivo have been developed with the aim of tracking the conduction of neural action potentials across a complex interconnected network. This is usually performed through the use of electrodes to record from single or small groups of microelectrodes, and using only one electrode to monitor an action potential at any given time. More complex high-density electrode structures (with thousands of electrodes or more) capable of tracking action potential propagation have been developed but are not widely available. We have developed an algorithm taking data from clusters of electrodes positioned such that action potentials are detected by multiple sites, and using this to detect the location and velocity of action potentials from multiple neurons. The system has been tested by analyzing recordings from probes implanted into the locust nervous system, where recorded positions and velocities correlate well with the known physical form of the nerve.


1998 ◽  
Vol 80 (2) ◽  
pp. 1011-1015 ◽  
Author(s):  
Matt Wachowiak ◽  
Lawrence B. Cohen

Wachowiak, Matt and Lawrence B. Cohen. Presynaptic afferent inhibition of lobster olfactory receptor cells: reduced action-potential propagation into axon terminals. J. Neurophysiol. 80: 1011–1015, 1998. Action-potential propagation into the axon terminals of olfactory receptor cells was measured with the use of voltage-sensitive dye imaging in the isolated spiny lobster brain. Conditioning shocks to the olfactory nerve, known to cause long-lasting suppression of olfactory lobe neurons, allowed the selective imaging of activity in receptor cell axon terminals. In normal saline the optical signal from axon terminals evoked by a test stimulus was brief (40 ms) and small in amplitude. In the presence of low-Ca2+/high-Mg2+ saline designed to reduce synaptic transmission, the test response was unchanged in time course but increased significantly in amplitude (57 ± 16%, means ± SE). This increase suggests that propagation into receptor cell axon terminals is normally suppressed after a conditioning shock; this suppression is presumably synaptically mediated. Thus our results show that presynaptic inhibition occurs at the first synapse in the olfactory pathway and that the inhibition is mediated, at least in part, via suppression of action-potential propagation into the presynaptic terminal.


2013 ◽  
Vol 104 (2) ◽  
pp. 78a
Author(s):  
Alfredo Gonzalez-Perez ◽  
Thomas Heimburg

Sign in / Sign up

Export Citation Format

Share Document