Cerebellar Disorders and Ataxias: Inherited Disorders

2021 ◽  
pp. 618-631
Author(s):  
Anhar Hassan

Disorders of the cerebellum or its circuitry can result in ataxia. These disorders may be acquired or inherited. Inherited ataxias may be autosomal recessive (eg. Friedrich ataxia), autosomal dominant (eg, spinal cerebellar atrophy) or X linked (eg, fragile X–associated ataxia syndrome). Chapter 73 (“Cerebellar Disorders and Ataxias: Acquired Disorders”) reviews the clinical approach to patients with ataxia and discusses acquired forms of ataxia. This chapter reviews clinical approaches, diagnostic details, and treatment of inherited ataxias.

Author(s):  
Josef Finsterer

Heredoataxias are a group of genetic disorders with a cerebellar syndrome as the leading clinical manifestation. The current classification distinguishes heredoataxias according to the trait of inheritance into autosomal dominant, autosomal recessive, X-linked, and maternally inherited heredoataxias. The autosomal dominant heredoataxias are separated into spinocerebellar ataxias (SCA1-8, 10-15, 17-23, 25-30, and dentato-rubro-pallido-luysian atrophy), episodic ataxias (EA1-7), and autosomal dominant mitochondrial heredoataxias (Leigh syndrome, MIRAS, ADOAD, and AD-CPEO). The autosomal recessive ataxias are separated into Friedreich ataxia, ataxia due to vitamin E deficiency, ataxia due to Abeta-lipoproteinemia, Refsum disease, late-onset Tay-Sachs disease, cerebrotendineous xanthomatosis, spinocerebellar ataxia with axonal neuropathy, ataxia telangiectasia, ataxia telangiectasia-like disorder, ataxia with oculomotor apraxia 1 and 2, spastic ataxia of Charlevoix-Saguenay, Cayman ataxia, Marinesco-Sjögren syndrome, and autosomal recessive mitochondrial ataxias (AR-CPEO, SANDO, SCAE, AHS, IOSCA, MEMSA, LBSL CoQ-deficiency, PDC-deficiency). Only two of the heredoataxias, fragile X/tremor/ataxia syndrome, and XLSA/A are transmitted via an X-linked trait. Maternally inherited heredoataxias are due to point mutations in genes encoding for tRNAs, rRNAs, respiratory chain subunits or single large scale deletions/duplications of the mitochondrial DNA and include MELAS, MERRF, KSS, PS, MILS, NARP, and non-syndromic mitochondrial disorders. Treatment of heredoataxias is symptomatic and supportive and may have a beneficial effect in single patients.**Please see page 424 for abbreviation list.


2015 ◽  
Author(s):  
Susan Perlman

The inherited ataxias are disorders that cause progressive imbalance as a result of pathology in the cerebellum and its various connecting pathways. Autosomal recessive ataxias include Friedreich ataxia, ataxia with isolated vitamin E deficiency, ataxia-telangiectasia, and autosomal recessive ataxia of Charlevoix-Saguenay, among others. A discussion of autosomal dominant ataxias covers spinocerebellar ataxias (SCA) types 1 through 14, dentatorubral pallidoluysian atrophy (DRPLA), and episodic ataxia (EA) syndromes. Clinical features, laboratory studies, differential diagnosis, and management of inherited ataxias are discussed. Tables describe both autosomal recessive ataxias and autosomal dominant ataxias (with known gene loci), childhood– or young adult–onset ataxias with ill-defined genetic abnormalities, phenotypic features that may indicate a specific genotype in the common autosomal dominant ataxias, and normal and expanded ranges of various repetitive nucleotide sequences in inherited ataxias. Figures include a diagrammatic representation of the type of repeat expansions associated with ataxias, aggregates of ataxin 3, a schematic of some of the proposed pathogenic mechanisms in the polyglutamine ataxias, and dystonia in a patient with SCA3. A sidebar offers selected Internet resources for information on ataxias. This chapter contains 64 references.


2001 ◽  
Vol 21 (5) ◽  
pp. 430-440 ◽  
Author(s):  
Ira D. Davis ◽  
Katherine MacRae Dell ◽  
William E. Sweeney ◽  
Ellis D. Avner

Author(s):  
Kent E. Duncan

Both RNA-binding proteins (RBPs) and translation are increasingly implicated in several neurodegenerative diseases, but their specific roles in promoting disease are not yet fully defined. This chapter critically evaluates the evidence that altered translation of specific mRNAs mediated by RNA-binding proteins plays an important role in driving specific neurodegenerative diseases. First, diseases are discussed where a causal role for RNA-binding proteins in disease appears solid, but whether this involves altered translation is less clear. The main foci here are TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS) in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Subsequently, diseases are presented where altered translation is believed to contribute, but involvement of RNA-binding proteins is less clear. These include Huntington’s and other repeat expansion disorders such as fragile X tremor/ataxia syndrome (FXTAS), where repeat-induced non-AUG-initiated (RAN) translation is a focus. The potential contribution of both canonical and non-canonical RBPs to altered translation in Parkinson’s disease is discussed. The chapter closes by proposing key research frontiers for the field to explore and outlining methodological advances that could help to address them.


2021 ◽  
Author(s):  
María Jimena Salcedo‐Arellano ◽  
Jun Yi Wang ◽  
Yingratana A. McLennan ◽  
Mai Doan ◽  
Ana Maria Cabal‐Herrera ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 466-471
Author(s):  
Giulia Grigioni ◽  
Christian Saleh ◽  
Phillip Jaszczuk ◽  
Dorothea Wand ◽  
Stefanie Wilmes ◽  
...  

Fragile-X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that manifests with intention tremor, progressive gait ataxia, and cognitive impairment. The disease is genetically characterized by a premutation of the <i>FMR1</i>gene on the X-chromosome manifesting with a CGG triplet expansion between 55 and 200. Given the phenotypical variety of this disease, diagnosis is frequently delayed. We present and discuss a male patient whose diagnosis of FXTAS was delayed due to his concomitant alcohol abuse.


Neurogenetics ◽  
2021 ◽  
Author(s):  
Katja Kloth ◽  
Bernarda Lozic ◽  
Julia Tagoe ◽  
Mariëtte J. V. Hoffer ◽  
Amelie Van der Ven ◽  
...  

AbstractANK3 encodes multiple isoforms of ankyrin-G, resulting in variegated tissue expression and function, especially regarding its role in neuronal development. Based on the zygosity, location, and type, ANK3 variants result in different neurodevelopmental phenotypes. Autism spectrum disorder has been associated with heterozygous missense variants in ANK3, whereas a more severe neurodevelopmental phenotype is caused by isoform-dependent, autosomal-dominant, or autosomal-recessive loss-of-function variants. Here, we present four individuals affected by a variable neurodevelopmental phenotype harboring a heterozygous frameshift or nonsense variant affecting all ANK3 transcripts. Thus, we provide further evidence of an isoform-based phenotypic continuum underlying ANK3-associated pathologies and expand its phenotypic spectrum.


2021 ◽  
Vol 22 (16) ◽  
pp. 8368
Author(s):  
Luis M. Valor ◽  
Jorge C. Morales ◽  
Irati Hervás-Corpión ◽  
Rosario Marín

Abnormal trinucleotide expansions cause rare disorders that compromise quality of life and, in some cases, lifespan. In particular, the expansions of the CGG-repeats stretch at the 5’-UTR of the Fragile X Mental Retardation 1 (FMR1) gene have pleiotropic effects that lead to a variety of Fragile X-associated syndromes: the neurodevelopmental Fragile X syndrome (FXS) in children, the late-onset neurodegenerative disorder Fragile X-associated tremor-ataxia syndrome (FXTAS) that mainly affects adult men, the Fragile X-associated primary ovarian insufficiency (FXPOI) in adult women, and a variety of psychiatric and affective disorders that are under the term of Fragile X-associated neuropsychiatric disorders (FXAND). In this review, we will describe the pathological mechanisms of the adult “gain-of-function” syndromes that are mainly caused by the toxic actions of CGG RNA and FMRpolyG peptide. There have been intensive attempts to identify reliable peripheral biomarkers to assess disease progression and onset of specific pathological traits. Mitochondrial dysfunction, altered miRNA expression, endocrine system failure, and impairment of the GABAergic transmission are some of the affectations that are susceptible to be tracked using peripheral blood for monitoring of the motor, cognitive, psychiatric and reproductive impairment of the CGG-expansion carriers. We provided some illustrative examples from our own cohort. Understanding the association between molecular pathogenesis and biomarkers dynamics will improve effective prognosis and clinical management of CGG-expansion carriers.


Sign in / Sign up

Export Citation Format

Share Document