scholarly journals Observations of HII Regions at 178 MHz

1967 ◽  
Vol 137 (2) ◽  
pp. 141-150 ◽  
Author(s):  
J. L. Caswell ◽  
J. R. Shakeshaft
Keyword(s):  
1980 ◽  
Vol 4 (1) ◽  
pp. 95-97 ◽  
Author(s):  
J. B. Whiteoak ◽  
F. F. Gardner

As part of a general investigation of interstellar clouds associated with southern HII regions we have begun a high-resolution study of the sodium D-line absorption in the directions of early-type stars that are likely to be associated with or located behind the clouds.


2019 ◽  
Vol 15 (S356) ◽  
pp. 393-394
Author(s):  
Martin M. Mutie ◽  
Paul Baki ◽  
James O. Chibueze ◽  
Khadija El Bouchefry

AbstractWe report the results of 14 years of monitoring of G188.95+0.89 periodic 6.7 GHz methanol masers using the Hartebeesthoek 26-m radio telescope. G188.95+0.89 (S252, AFGL5180) is a radio-quiet methanol maser site that is often interpreted as precursors of ultra-compact HII regions or massive protostar sites. At least five bright spectral components were identified. The maser feature at 11.36 km s-1 was found to experience an exponential decay during the monitoring period. The millimetre continuum reveals two cores associated with the source.


1969 ◽  
Vol 1 (5) ◽  
pp. 211-212
Author(s):  
B. J. Robinson ◽  
W. M. Goss ◽  
R. N. Manchester

During 1968 we have found at Parkes several types of emission in the lines of the 18 cm quadruplet of the ground-state OH molecule. This note describes a strong source of 1612 MHz emission near galactic longitude 331°.OH emission was originally detected in the vicinity of HII regions, and a search of a large number of HII regions showed that about a third had associated OH emission. This type of emission is usually strongest at 1665 MHz, and is also seen at 1667 MHz and weakly on one of the satellite lines.


1988 ◽  
Vol 129 ◽  
pp. 255-256
Author(s):  
A. J. Kemball ◽  
P. J. Diamond ◽  
F. Mantovani

The apparent spot sizes of OH masers appear to be significantly broadened when seen through the inner galaxy or large extents of the galactic disk (Burke 1968). Bowers et al (1980) found evidence of small-scale structure (≲ 50 mas) in OH sources at distances of less than 5 kpc but this was characteristically absent in very distant sources (≳ 8kpc) at galactic longitudes 1 ≲ 40°. This result is typically explained in terms of interstellar scattering (ISS) by intervening diffuse HII regions.


Astrophysics ◽  
2007 ◽  
Vol 50 (4) ◽  
pp. 426-439 ◽  
Author(s):  
A. A. Hakobyan ◽  
A. R. Petrosian ◽  
A. A. Yeghazaryan ◽  
J. Boulesteix
Keyword(s):  

1986 ◽  
Vol 6 (3) ◽  
pp. 325-329 ◽  
Author(s):  
J . I. Harnet

AbstractThe five major members of the Sculptor Group of galaxies and NGC 45 have been observed with the Molonglo observatory synthesis telescope. NGC 247 and NGC 300 were not detected and upper limits to their 843 MHz flux densities are given. Radio emission from NGC 7793 is discussed with particular attention to its morphology, radial dependence compared with that of the blue light and possible coincidences between HII regions and 843 MHz peak flux densities.


1980 ◽  
Vol 5 ◽  
pp. 191-191
Author(s):  
V. C. Rubin

For a sample of 21 Sc galaxies with a wide range of luminosities, of radii, and of masses, W. K. Ford and I have obtained spectra and determined rotation curves. By their kinematical behavior in their central regions, the Sc’s can be separated into two groups. Some galaxies, generally small and of low luminosity, have shallow central velocity gradients, reflecting their low central masses and densities. Other galaxies, most often large ones of high luminosity, have steep central velocity gradients. One reason this separation by central velocity gradients is of interest is because these galaxies exhibit other significant spectral differences which go hand-in-hand with the kinematical differences.The small, low luminosity galaxies show emission lines of Hα and [NII], with nuclear Ha sharp and stronger than [NII], and little or no stellar nuclear continuum, just as conventional HII regions. In contrast, the high luminosity galaxies show broad nuclear emission, with [NII] stronger than Ha. These galaxies have a strong red stellar continuum, arising from a red stellar population. The cause of the Hα[NII] intensity reversal in the nuclei of some galaxies remains unknown. However, the strong [NII] emission in generally high luminosity galaxies with massive nuclei, nuclei which show strong red continua, suggests that [Nil] intensity correlates with nuclear luminosity, and in turn with the density and velocity properties of the nuclear populations. We would expect high velocity dispersions and high bulge luminosities for galaxies with strong nuclear [NII] and steep central velocity gradients.


2008 ◽  
Vol 8 (5) ◽  
pp. 575-579 ◽  
Author(s):  
Wei-Bin Shi ◽  
Xiao-Hui Sun ◽  
Jin-Lin Han ◽  
Xu-Yang Gao ◽  
Li Xiao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document