scholarly journals Non-linear galaxy power spectrum and cosmological parameters

2004 ◽  
Vol 348 (1) ◽  
pp. 250-260 ◽  
Author(s):  
Asantha Cooray
2020 ◽  
Vol 492 (4) ◽  
pp. 5023-5029 ◽  
Author(s):  
Niall Jeffrey ◽  
François Lanusse ◽  
Ofer Lahav ◽  
Jean-Luc Starck

ABSTRACT We present the first reconstruction of dark matter maps from weak lensing observational data using deep learning. We train a convolution neural network with a U-Net-based architecture on over 3.6 × 105 simulated data realizations with non-Gaussian shape noise and with cosmological parameters varying over a broad prior distribution. We interpret our newly created dark energy survey science verification (DES SV) map as an approximation of the posterior mean P(κ|γ) of the convergence given observed shear. Our DeepMass1 method is substantially more accurate than existing mass-mapping methods. With a validation set of 8000 simulated DES SV data realizations, compared to Wiener filtering with a fixed power spectrum, the DeepMass method improved the mean square error (MSE) by 11 per cent. With N-body simulated MICE mock data, we show that Wiener filtering, with the optimal known power spectrum, still gives a worse MSE than our generalized method with no input cosmological parameters; we show that the improvement is driven by the non-linear structures in the convergence. With higher galaxy density in future weak lensing data unveiling more non-linear scales, it is likely that deep learning will be a leading approach for mass mapping with Euclid and LSST.


2020 ◽  
Vol 501 (1) ◽  
pp. 833-852
Author(s):  
Toshiki Kurita ◽  
Masahiro Takada ◽  
Takahiro Nishimichi ◽  
Ryuichi Takahashi ◽  
Ken Osato ◽  
...  

ABSTRACT We use a suite of N-body simulations to study intrinsic alignments (IA) of halo shapes with the surrounding large-scale structure in the ΛCDM model. For this purpose, we develop a novel method to measure multipole moments of the three-dimensional power spectrum of the E-mode field of halo shapes with the matter/halo distribution, $P_{\delta E}^{(\ell)}(k)$ (or $P^{(\ell)}_{{\rm h}E}$), and those of the auto-power spectrum of the E-mode, $P^{(\ell)}_{EE}(k)$, based on the E/B-mode decomposition. The IA power spectra have non-vanishing amplitudes over the linear to non-linear scales, and the large-scale amplitudes at k ≲ 0.1 h−1 Mpc are related to the matter power spectrum via a constant coefficient (AIA), similar to the linear bias parameter of galaxy or halo density field. We find that the cross- and auto-power spectra PδE and PEE at non-linear scales, k ≳ 0.1 h−1 Mpc, show different k-dependences relative to the matter power spectrum, suggesting a violation of the non-linear alignment model commonly used to model contaminations of cosmic shear signals. The IA power spectra exhibit baryon acoustic oscillations, and vary with halo samples of different masses, redshifts, and cosmological parameters (Ωm, S8). The cumulative signal-to-noise ratio for the IA power spectra is about 60 per cent of that for the halo density power spectrum, where the super-sample covariance is found to give a significant contribution to the total covariance. Thus our results demonstrate that the IA power spectra of galaxy shapes, measured from imaging and spectroscopic surveys for an overlapping area of the sky, can be used to probe the underlying matter power spectrum, the primordial curvature perturbations, and cosmological parameters, in addition to the standard galaxy density power spectrum.


2020 ◽  
Vol 500 (4) ◽  
pp. 4439-4447
Author(s):  
Alex Krolewski ◽  
Zachary Slepian

ABSTRACT The non-linear mass is a characteristic scale in halo formation that has many applications across cosmology. Naively, computing it requires repeated numerical integration to calculate the variance of the power spectrum on different scales and determine which scales exceed the threshold for non-linear collapse. We accelerate calculation of both the non-linear mass and the rms amplitude of the power spectrum σ(R) by working in configuration space and approximating the correlation function as a polynomial at r ≤ 5 h−1 Mpc. This enables an analytic rather than numerical solution for the non-linear mass, accurate across a variety of cosmologies to 0.1–$1{{\ \rm per\ cent}}$ in mass (depending on redshift) and 20–60× faster than the standard numerical method. We also present a further acceleration of the non-linear mass (400–1000× faster than the standard method) in which we determine the polynomial coefficients using a Taylor expansion in the cosmological parameters rather than re-fitting a polynomial to the correlation function. Our method is also 500× faster than the standard method for σ(R) for a typical case of NR = 100 desired R values, with timing essentially independent of NR. Our approach can be used for quick calculation of the halo mass function, halo mass–bias relation, and cosmological calculations involving the non-linear mass.


1999 ◽  
Vol 523 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Wolfram Freudling ◽  
Idit Zehavi ◽  
Luiz N. da Costa ◽  
Avishai Dekel ◽  
Amiram Eldar ◽  
...  

2019 ◽  
Vol 491 (3) ◽  
pp. 3101-3107 ◽  
Author(s):  
M Cataneo ◽  
J D Emberson ◽  
D Inman ◽  
J Harnois-Déraps ◽  
C Heymans

ABSTRACT We analytically model the non-linear effects induced by massive neutrinos on the total matter power spectrum using the halo model reaction framework of Cataneo et al. In this approach, the halo model is used to determine the relative change to the matter power spectrum caused by new physics beyond the concordance cosmology. Using standard fitting functions for the halo abundance and the halo mass–concentration relation, the total matter power spectrum in the presence of massive neutrinos is predicted to per cent-level accuracy, out to $k=10 \,{ h}\,{\rm Mpc}^{-1}$. We find that refining the prescriptions for the halo properties using N-body simulations improves the recovered accuracy to better than 1 per cent. This paper serves as another demonstration for how the halo model reaction framework, in combination with a single suite of standard Λ cold dark matter (ΛCDM) simulations, can recover per cent-level accurate predictions for beyond ΛCDM matter power spectra, well into the non-linear regime.


2002 ◽  
Vol 336 (3) ◽  
pp. 892-900 ◽  
Author(s):  
X. Kang ◽  
Y. P. Jing ◽  
H. J. Mo ◽  
G. Borner

2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Matthias Bartelmann ◽  
Johannes Dombrowski ◽  
Sara Konrad ◽  
Elena Kozlikin ◽  
Robert Lilow ◽  
...  

We use the recently developed Kinetic Field Theory (KFT) for cosmic structure formation to show how non-linear power spectra for cosmic density fluctuations can be calculated in a mean-field approximation to the particle interactions. Our main result is a simple, closed and analytic, approximate expression for this power spectrum. This expression has two parameters characterising non-linear structure growth which can be calibrated within KFT itself. Using this self-calibration, the non-linear power spectrum agrees with results obtained from numerical simulations to within typically \lesssim10\,\%≲10% up to wave numbers k\lesssim10\,h\,\mathrm{Mpc}^{-1}k≲10hMpc−1 at redshift z = 0z=0. Adjusting the two parameters to optimise agreement with numerical simulations, the relative difference to numerical results shrinks to typically \lesssim 5\,\%≲5%. As part of the derivation of our mean-field approximation, we show that the effective interaction potential between dark-matter particles relative to Zel’dovich trajectories is sourced by non-linear cosmic density fluctuations only, and is approximately of Yukawa rather than Newtonian shape.


2005 ◽  
Vol 216 ◽  
pp. 67-74
Author(s):  
Anže Slosar ◽  
Clive Dickinson

The Very Small Array (VSA) is a unique interferometric telescope operating at 33 GHz at Tenerife. It has the ability to measure fluctuations in the CMB over a large range of angular scales by means of three main array configurations: compact, extended and super-extended. These angular scales correspond to the multipole range ℓ = 150 —2500. Here we present new results from further observations of the extended array (February 2002 - June 2003). We cover ℓ-values up to ℓ ∼ 1600, thus doubling the ℓ-range of WMAP. The resulting power spectrum in the ℓ-range 800 – 1600 has very low noise coupled with good ℓ-resolution (Δℓ ∼ 80). Furthermore, the use of independently tracking aerials along with the dedicated source subtraction baseline allows unprecedented control of systematics. The latter is essential, since discrete sources are the dominant foreground at these angular scales. These measurements over larger ℓ-ranges are important in confirming the present cosmological paradigm and breaking degeneracies in the extraction of cosmological parameters.


2005 ◽  
Vol 216 ◽  
pp. 43-50
Author(s):  
J. B. Peterson ◽  
A. K. Romer ◽  
P. L. Gomez ◽  
P. A. R. Ade ◽  
J. J. Bock ◽  
...  

The Arcminute Cosmology Bolometer Array Receiver (Acbar) is a multifrequency millimeter-wave receiver optimized for observations of the Cosmic Microwave Background (CMB) and the Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies. Acbar was installed on the 2.1 m Viper telescope at the South Pole in January 2001 and the results presented here incorporate data through July 2002. The power spectrum of the CMB at 150 GHz over the range ℓ = 150 — 3000 measured by Acbar is presented along with estimates for the values of the cosmological parameters within the context of ΛCDM models. The inclusion of ΩΛ greatly improves the fit to the power spectrum. Three-frequency images of the SZ decrement/increment are also presented for the galaxy cluster 1E0657–67.


Sign in / Sign up

Export Citation Format

Share Document