scholarly journals Planet migration in self-gravitating discs: survival of planets

2020 ◽  
Vol 496 (2) ◽  
pp. 1598-1609 ◽  
Author(s):  
Sahl Rowther ◽  
Farzana Meru

ABSTRACT We carry out three-dimensional smoothed particle hydrodynamics simulations to study whether planets can survive in self-gravitating protoplanetary discs. The discs modelled here use a cooling prescription that mimics a real disc, which is only gravitationally unstable in the outer regions. We do this by modelling the cooling using a simplified method such that the cooling time in the outer parts of the disc is shorter than in the inner regions, as expected in real discs. We find that both giant (>MSat) and low-mass (<MNep) planets initially migrate inwards very rapidly, but are able to slow down in the inner gravitationally stable regions of the disc without needing to open up a gap. This is in contrast to previous studies where the cooling was modelled in a more simplified manner where, regardless of mass, the planets were unable to slow down their inward migration. This shows the important effect the thermodynamics has on planet migration. In a broader context, these results show that planets that form in the early stages of the discs’ evolution, when they are still quite massive and self-gravitating, can survive.

Author(s):  
O. Lomax ◽  
A. P. Whitworth ◽  
D. A. Hubber

AbstractDisc fragmentation provides an important mechanism for producing low-mass stars in prestellar cores. Here, we describe smoothed particle hydrodynamics simulations which show how populations of prestellar cores evolve into stars. We find the observed masses and multiplicities of stars can be recovered under certain conditions.First, protostellar feedback from a star must be episodic. The continuous accretion of disc material on to a central protostar results in local temperatures which are too high for disc fragmentation. If, however, the accretion occurs in intense outbursts, separated by a downtime of ~ 104yr, gravitational instabilities can develop and the disc can fragment.Second, a significant amount of the cores’ internal kinetic energy should be in solenoidal turbulent modes. Cores with less than a third of their kinetic energy in solenoidal modes have insufficient angular momentum to form fragmenting discs. In the absence of discs, cores can fragment but results in a top-heavy distribution of masses with very few low-mass objects.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050009
Author(s):  
Sisi Tan ◽  
Mingze Xu

Numerical modeling of whole blood still faces great challenges although significant progress has been achieved in recent decades, because of the large differences of physical and geometric properties among blood components, including red blood cells (RBCs), platelets (PLTs) and white blood cells (WBCs). In this work, we develop a three-dimensional (3D) smoothed particle hydrodynamics (SPH) model to study the whole blood in shear flow. The immersed boundary method (IBM) is used to deal with the interaction between the fluid and cells, which provides a possibility to model the RBCs, PLTs and WBCs simultaneously. The deformation of a small capsule, comparable to a PLT in size, is first examined to show the feasibility of SPH model for the PLTs’ behaviors. The motion of a single RBC in shear flow is then studied, and three typical modes, tank-treading, swinging and tumbling motions, are reproduced, which further confirm the reliability of the SPH model. After that, a simulation of the whole blood in shear flow is carried out, in which the margination trend is observed for both PLTs and WBC. This shows the capability of SPH model with IBM for the simulation of whole blood.


2019 ◽  
Vol 95 ◽  
pp. 02011
Author(s):  
Anisa Wulandari ◽  
R.R Dwinanti Rika ◽  
Jessica Sjah ◽  
Herr Soeryantono

Scouring Phenomenon directly occurs on materials due to the motion of water flow and water borne sediments that researchers in the world continue to investigate. Scouring are then continuously developed in Computational Fluid Dynamics (CFD) to be able to estimate scouring effects by analyzing interaction between fluid and solid. Water and solid interaction can be researched by realizing three dimensional numerical modeling (3D) using Smoothed Particle Hydrodynamics Method which is modeling and visualizing fluid behavior with a Lagrangian approach in particle scale (micro scale), a more particle approach realistic than the grid approach. Using this method, the results of each particle can be reviewed either by their property values or visually so that the results are obtained more representatives. One of the factors affecting fluid-solid modeling is spacing ratio between solid particle and fluid particle. To obtain the correct physical results, it is required to consider the influence of spacing ratio and the value of Stiffness Coefficient (Ks) needed.


Sign in / Sign up

Export Citation Format

Share Document