scholarly journals The chemical nature of the young 120-Myr-old nearby Pisces–Eridanus stellar stream flowing through the Galactic disc

2020 ◽  
Vol 496 (2) ◽  
pp. 2422-2435
Author(s):  
Keith Hawkins ◽  
Madeline Lucey ◽  
Jason Curtis

ABSTRACT Recently, a new cylindrical-shaped stream of stars up to 700 pc long was discovered hiding in the Galactic disc using kinematic data enabled by the Gaia mission. This stream of stars, dubbed Pisces–Eridanus (Psc–Eri), was initially thought to be as old as 1 Gyr, yet its stars shared a rotation period distribution consistent with a population that was 120 Myr old. Here, we explore the detailed chemical nature of this stellar stream. We carried out high-resolution spectroscopic follow-up of 42 Psc–Eri stars using McDonald Observatory and combined these data with information for 40 members observed with the low-resolution LAMOST spectroscopic survey. Together, these data enabled us to measure the abundance distribution of light/odd-Z (Li, Na, Al, Sc, V), α (Mg, Si, Ca, Ti), Fe-peak (Cr, Mn, Fe, Co, Ni, Zn), and neutron capture (Sr, Y, Zr, Ba, La, Nd, Eu) elements along the Psc–Eri stream. We find that the stream is (1) near-solar metallicity with [Fe/H] = –0.03 dex and (2) has a metallicity spread of 0.07 dex (or 0.04 dex when outliers are excluded). We also find that (3) the abundance of Li indicates that Psc–Eri is ∼120 Myr old, consistent with its gyrochronology age. Additionally, Psc–Eri has (4) [X/Fe] abundance spreads that are just larger than the typical uncertainty in most elements, (5) it is a cylindrical-like system whose outer edges rotate about the centre, and (6) no significant abundance gradients along its major axis except a potentially weak gradient in [Si/Fe]. These results show that Psc–Eri is a uniquely close young chemically interesting laboratory for testing our understanding of star and planet formation.

Author(s):  
J. Salmon ◽  
R. M Canup

Impacts that leave the Earth–Moon system with a large excess in angular momentum have recently been advocated as a means of generating a protolunar disc with a composition that is nearly identical to that of the Earth's mantle. We here investigate the accretion of the Moon from discs generated by such ‘non-canonical’ impacts, which are typically more compact than discs produced by canonical impacts and have a higher fraction of their mass initially located inside the Roche limit. Our model predicts a similar overall accretional history for both canonical and non-canonical discs, with the Moon forming in three consecutive steps over hundreds of years. However, we find that, to yield a lunar-mass Moon, the more compact non-canonical discs must initially be more massive than implied by prior estimates, and only a few of the discs produced by impact simulations to date appear to meet this condition. Non-canonical impacts require that capture of the Moon into the evection resonance with the Sun reduced the Earth–Moon angular momentum by a factor of 2 or more. We find that the Moon's semi-major axis at the end of its accretion is approximately 7 R ⊕ , which is comparable to the location of the evection resonance for a post-impact Earth with a 2.5 h rotation period in the absence of a disc. Thus, the dynamics of the Moon's assembly may directly affect its ability to be captured into the resonance.


2020 ◽  
Vol 6 (33) ◽  
pp. eabc1202 ◽  
Author(s):  
Jing Qin ◽  
Chong You ◽  
Qiushi Lin ◽  
Taojun Hu ◽  
Shicheng Yu ◽  
...  

We have proposed a novel, accurate low-cost method to estimate the incubation-period distribution of COVID-19 by conducting a cross-sectional and forward follow-up study. We identified those presymptomatic individuals at their time of departure from Wuhan and followed them until the development of symptoms. The renewal process was adopted by considering the incubation period as a renewal and the duration between departure and symptoms onset as a forward time. Such a method enhances the accuracy of estimation by reducing recall bias and using the readily available data. The estimated median incubation period was 7.76 days [95% confidence interval (CI): 7.02 to 8.53], and the 90th percentile was 14.28 days (95% CI: 13.64 to 14.90). By including the possibility that a small portion of patients may contract the disease on their way out of Wuhan, the estimated probability that the incubation period is longer than 14 days was between 5 and 10%.


2018 ◽  
Vol 618 ◽  
pp. A48 ◽  
Author(s):  
M. Mittag ◽  
J. H. M. M. Schmitt ◽  
K.-P. Schröder

The connection between stellar rotation, stellar activity, and convective turnover time is revisited with a focus on the sole contribution of magnetic activity to the Ca II H&K emission, the so-called excess flux, and its dimensionless indicator R+HK in relation to other stellar parameters and activity indicators. Our study is based on a sample of 169 main-sequence stars with directly measured Mount Wilson S-indices and rotation periods. The R+HK values are derived from the respective S-indices and related to the rotation periods in various B–V-colour intervals. First, we show that stars with vanishing magnetic activity, i.e. stars whose excess flux index R+HK approaches zero, have a well-defined, colour-dependent rotation period distribution; we also show that this rotation period distribution applies to large samples of cool stars for which rotation periods have recently become available. Second, we use empirical arguments to equate this rotation period distribution with the global convective turnover time, which is an approach that allows us to obtain clear relations between the magnetic activity related excess flux index R+HK, rotation periods, and Rossby numbers. Third, we show that the activity versus Rossby number relations are very similar in the different activity indicators. As a consequence of our study, we emphasize that our Rossby number based on the global convective turnover time approaches but does not exceed unity even for entirely inactive stars. Furthermore, the rotation-activity relations might be universal for different activity indicators once the proper scalings are used.


2015 ◽  
Vol 174 (2) ◽  
pp. 70-76
Author(s):  
A. F. Romanchishen ◽  
K. V. Vabalaite

The authors studied the long-term results of surgical treatment of 949 patients with thyroid carcinoma. The malignant tumors of other organs were revealed in 55 (5,8%) cases during 20 years of follow-up. It was stated that patients with thyroid carcinoma had a higher risk of developing other malignant tumors than in population. A typical background for onset of other neoplasms was a latent hypothyroidism, hyperlipidemia, hypersecretion of gonadotropins, an influence of occupational hazard of chemical nature and hereditary load of oncology.


2020 ◽  
Vol 641 ◽  
pp. A51 ◽  
Author(s):  
D. J. Fritzewski ◽  
S. A. Barnes ◽  
D. J. James ◽  
K. G. Strassmeier

Aims. We wish to measure the cool star rotation period distribution for the Pleiades-age rich open cluster NGC 2516 and use it to determine whether cluster-to-cluster variations exist in otherwise identical open clusters. Methods. We obtained 42 d-long time-series CCD photometry of NGC 2516 in the V and Ic filters using the Yale 1 m telescope at CTIO and performed a number of related analyses, including PSF-based time-series photometry. Our data are complemented with additional information from several photometric datasets, literature radial velocities, and Gaia DR2 astrometry. All available data are used to construct an integrated membership list for NGC 2516, containing 844 stars in our ≈1° field of view. Results. We derived 308 rotation periods for late-F to mid-M cluster members from our photometry. We identified an additional 247 periodic M dwarf stars from a prior study as cluster members, and used these to construct a 555-star rotation period distribution for NGC 2516. The colour-period diagram (in multiple colours) has almost no outliers and exhibits the anticipated triangular shape, with a diagonal slow rotator sequence that is preferentially occupied by the warmer stars along with a flat fast rotator sequence that is preferentially populated by the cooler cluster members. We also find a group of extremely slowly rotating M dwarfs (10 d ≲ Prot ≲ 23 d), forming a branch in the colour-period diagram which we call the “extended slow rotator sequence”. This, and other features of the rotational distribution can also be found in the Pleiades, making the colour-period diagrams of the two clusters nearly indistinguishable. A comparison with the well-studied (and similarly aged) open cluster M 35 indicates that the cluster’s rotational distribution is also similarly indistinguishable from that of NGC 2516. Those for the open clusters M 50 and Blanco 1 are similar, but data issues for those clusters make the comparisons somewhat more ambiguous. Nevertheless, we demonstrate the existence of a representative zero-age main sequence rotational distribution and provide a simple colour-independent way to represent it. We perform a detailed comparison of the NGC 2516 rotation period data with a number of recent rotational evolution models. Using X-ray data from the literature, we also construct the first rotation-activity diagram for solar-type stars in NGC 2516, one that we find is essentially indistinguishable from those for the Pleiades and Blanco 1. Conclusions. The two clusters NGC 2516 and Pleiades can be considered twins in terms of stellar rotation and related properties (and M 35, M 50, and Blanco 1 are similar), suggesting that otherwise identical open clusters also have intrinsically similar cool star rotation and activity distributions.


2020 ◽  
Vol 635 ◽  
pp. A43 ◽  
Author(s):  
Timo Reinhold ◽  
Saskia Hekker

Context. Rotation period measurements of stars observed with the Kepler mission have revealed a lack of stars at intermediate rotation periods, accompanied by a decrease of photometric variability. Whether this so-called dearth region is a peculiarity of stars in the Kepler field, or reflects a general manifestation of stellar magnetic activity, is still under debate. The K2 mission has the potential to unravel this mystery by measuring stellar rotation and photometric variability along different fields in the sky. Aims. Our goal is to measure stellar rotation periods and photometric variabilities for tens of thousands of K2 stars, located in different fields along the ecliptic plane, to shed light on the relation between stellar rotation and photometric variability. Methods. We use Lomb–Scargle periodograms, auto-correlation and wavelet functions to determine consistent rotation periods. Stellar brightness variability is assessed by computing the variability range, Rvar, from the light curve. We further apply Gaussian mixture models to search for bimodality in the rotation period distribution. Results. Combining measurements from all K2 campaigns, we detect rotation periods in 29 860 stars. The reliability of these periods was estimated from stars observed more than once. We find that 75–90% of the stars show period deviation smaller than 20% between different campaigns, depending on the peak height threshold in the periodograms. For effective temperatures below 6000 K, the variability range shows a local minimum at different periods, consistent with an isochrone age of ∼750 Myr. Additionally, the rotation period distribution shows evidence for bimodality, although the dearth region in the K2 data is less pronounced compared to the Kepler field. The period at the dip of the bimodal distribution shows good agreement with the period at the local variability minimum. Conclusions. We conclude that the rotation period bimodality is present in different fields of the sky, and is hence a general manifestation of stellar magnetic activity. The reduced variability in the dearth region is interpreted as a cancelation between dark spots and bright faculae. Our results strongly advocate that the role of faculae has been underestimated so far, suggesting a more complex dependence of the brightness variability on the rotation period.


2019 ◽  
Vol 627 ◽  
pp. A97
Author(s):  
S. Messina

Context. Young (≲600 Myr) low-mass stars (M ≲ 1 M⊙) of equal mass exhibit a distribution of rotation periods. At the very early phases of stellar evolution, this distribution is set by the star-disc locking mechanism, which forces stars to rotate at the same rate as the inner edge of the disc. The primordial disc lifetime and consequently the duration of the disc-locking mechanism, can be significantly shortened by the presence of a close companion, making the rotation period distribution of close binaries different from that of either single stars or wide binaries. Aims. We use new data to investigate and better constrain the range of ages, the components separation, and the mass ratio dependence at which the rotation period distribution has been significantly affected by the disc dispersal that is enhanced by close companions. Methods. We select a sample of close binaries in the Upper Scorpius association (age ∼8 Myr) whose components have measured the separation and the rotation periods and compare their period distribution with that of coeval stars that are single stars. Results. We find that components of close binaries have, on average, rotation periods that are shorter than those of single stars. More precisely, binaries with approximately equal-mass components (0.9 ≤ M2/M1 ≤ 1.0) have rotation periods that are shorter than those of single stars by ∼0.4 d on average; the primary and secondary components of binaries with smaller mass ratios (0.8 < M2/M1 < 0.9) have rotation periods that are shorter than those of single stars by ∼1.9 d and ∼1.0 d on average, respectively. A comparison with the older 25 Myr β Pictoris association shows that whereas in the latter, all close binaries with projected separation ρ ≤ 80 AU rotate faster than single stars, in the Upper Scorpius this is only the case for about 70% of stars. Conclusions. We interpret the enhanced rotation in close binaries with respect to single stars as the consequence of an early disc dispersal induced by the presence of close companions. The enhanced rotation suggests that disc dispersal timescales are longest for single stars and shorter for close binaries.


2018 ◽  
Vol 609 ◽  
pp. L5 ◽  
Author(s):  
A. Reiners ◽  
I. Ribas ◽  
M. Zechmeister ◽  
J. A. Caballero ◽  
T. Trifonov ◽  
...  

We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 (V = 8.9 mag, M = 0.58 ± 0.08 M⊙), a bright M0.0 V star at a distance of 10.7 pc, is found to undergo periodic RV variations with a semi-amplitude of K = 5.1 ± 0.4 m s−1 and a period of P = 86.54 ± 0.06 d. The RV signal is found in our CARMENES data, which were taken between 2016 and 2017, and is supported by HIRES/Keck observations that were obtained since 2000. The RV variations are interpreted as resulting from a planet of minimum mass mP sin i = 25 ± 2 M⊕, 1.5 times the mass of Neptune, with an orbital semi-major axis a = 0.32 au and low eccentricity (e < 0.13). HD 147379 b is orbiting inside the temperate zone around the star, where water could exist in liquid form. The RV time-series and various spectroscopic indicators show additional hints of variations at an approximate period of 21.1 d (and its first harmonic), which we attribute to the rotation period of the star.


Sign in / Sign up

Export Citation Format

Share Document