scholarly journals The CARMENES search for exoplanets around M dwarfs

2018 ◽  
Vol 609 ◽  
pp. L5 ◽  
Author(s):  
A. Reiners ◽  
I. Ribas ◽  
M. Zechmeister ◽  
J. A. Caballero ◽  
T. Trifonov ◽  
...  

We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 (V = 8.9 mag, M = 0.58 ± 0.08 M⊙), a bright M0.0 V star at a distance of 10.7 pc, is found to undergo periodic RV variations with a semi-amplitude of K = 5.1 ± 0.4 m s−1 and a period of P = 86.54 ± 0.06 d. The RV signal is found in our CARMENES data, which were taken between 2016 and 2017, and is supported by HIRES/Keck observations that were obtained since 2000. The RV variations are interpreted as resulting from a planet of minimum mass mP sin i = 25 ± 2 M⊕, 1.5 times the mass of Neptune, with an orbital semi-major axis a = 0.32 au and low eccentricity (e < 0.13). HD 147379 b is orbiting inside the temperate zone around the star, where water could exist in liquid form. The RV time-series and various spectroscopic indicators show additional hints of variations at an approximate period of 21.1 d (and its first harmonic), which we attribute to the rotation period of the star.

2020 ◽  
Vol 639 ◽  
pp. A50 ◽  
Author(s):  
S. Benatti ◽  
M. Damasso ◽  
S. Desidera ◽  
F. Marzari ◽  
K. Biazzo ◽  
...  

Context. Observations of exoplanetary systems demonstrate that a wide variety of planetary architectures are possible. Determining the rate of occurrence of Solar System analogues – with inner terrestrial planets and outer gas giants – remains an open question. Aims. Within the framework of the Global Architecture of Planetary Systems (GAPS) project, we collected more than 300 spectra with HARPS-N at the Telescopio Nazionale Galileo for the bright G9V star HD 164922. This target is known to host one gas giant planet in a wide orbit (Pb ~1200 days, semi-major axis ~ 2 au) and a Neptune-mass planet with a period of Pc ~76 days. We aimed to investigate the presence of additional low-mass companions in the inner region of the system. Methods. We compared the radial velocities (RV) and the activity indices derived from the HARPS-N time series to measure the rotation period of the star and used a Gaussian process regression to describe the behaviour of the stellar activity. We then combined a model of planetary and stellar activity signals in an RV time series composed of almost 700 high-precision RVs, both from HARPS-N and literature data. We performed a dynamical analysis to evaluate the stability of the system and the allowed regions for additional potential companions. We performed experiments on the injection and recovery of additional planetary signals to gauge the sensitivity thresholds in minimum mass and orbital separation imposed by our data. Results. Thanks to the high sensitivity of the HARPS-N dataset, we detected an additional inner super-Earth with an RV semi-amplitude of 1.3 ± 0.2 m s−1 and a minimum mass of md sin i = 4 ± 1 M⊕. It orbits HD 164922 with a period of 12.458 ± 0.003 days. We disentangled the planetary signal from activity and measured a stellar rotation period of ~ 42 days. The dynamical analysis shows the long-term stability of the orbits of the three-planet system and allows us to identify the permitted regions for additional planets in the semi-major axis ranges 0.18–0.21 au and 0.6–1.4 au. The latter partially includes the habitable zone of the system. We did not detect any planet in these regions, down to minimum detectable masses of 5 and 18 M⊕, respectively. A larger region of allowed planets is expected beyond the orbit of planet b, where our sampling rules out bodies with minimum mass >50 M⊕. The planetary orbital parameters and the location of the snow line suggest that this system has been shaped by a gas disk migration process that halted after its dissipation.


2020 ◽  
Vol 635 ◽  
pp. A6 ◽  
Author(s):  
A. Bonfanti ◽  
M. Gillon

Context. Useful information can be retrieved by analysing the transit light curve of a planet-hosting star or induced radial velocity oscillations. However, inferring the physical parameters of the planet, such as mass, size, and semi-major axis, requires preliminary knowledge of some parameters of the host star, especially its mass or radius, which are generally inferred through theoretical evolutionary models. Aims. We seek to present and test a whole algorithm devoted to the complete characterisation of an exoplanetary system thanks to the global analysis of photometric or radial velocity time series combined with observational stellar parameters derived either from spectroscopy or photometry. Methods. We developed an integrated tool called MCMCI. This tool combines the Markov chain Monte Carlo (MCMC) approach of analysing photometric or radial velocity time series with a proper interpolation within stellar evolutionary isochrones and tracks, known as isochrone placement, to be performed at each chain step, to retrieve stellar theoretical parameters such as age, mass, and radius. Results. We tested the MCMCI on the HD 219134 multi-planetary system hosting two transiting rocky super Earths and on WASP-4, which hosts a bloated hot Jupiter. Even considering different input approaches, a final convergence was reached within the code, we found good agreement with the results already stated in the literature and we obtained more precise output parameters, especially concerning planetary masses. Conclusions. The MCMCI tool offers the opportunity to perform an integrated analysis of an exoplanetary system without splitting it into the preliminary stellar characterisation through theoretical models. Rather this approach favours a close interaction between light curve analysis and isochrones, so that the parameters recovered at each step of the MCMC enter as inputs for purposes of isochrone placement.


Author(s):  
J. Salmon ◽  
R. M Canup

Impacts that leave the Earth–Moon system with a large excess in angular momentum have recently been advocated as a means of generating a protolunar disc with a composition that is nearly identical to that of the Earth's mantle. We here investigate the accretion of the Moon from discs generated by such ‘non-canonical’ impacts, which are typically more compact than discs produced by canonical impacts and have a higher fraction of their mass initially located inside the Roche limit. Our model predicts a similar overall accretional history for both canonical and non-canonical discs, with the Moon forming in three consecutive steps over hundreds of years. However, we find that, to yield a lunar-mass Moon, the more compact non-canonical discs must initially be more massive than implied by prior estimates, and only a few of the discs produced by impact simulations to date appear to meet this condition. Non-canonical impacts require that capture of the Moon into the evection resonance with the Sun reduced the Earth–Moon angular momentum by a factor of 2 or more. We find that the Moon's semi-major axis at the end of its accretion is approximately 7 R ⊕ , which is comparable to the location of the evection resonance for a post-impact Earth with a 2.5 h rotation period in the absence of a disc. Thus, the dynamics of the Moon's assembly may directly affect its ability to be captured into the resonance.


2019 ◽  
Vol 622 ◽  
pp. A153 ◽  
Author(s):  
E. Nagel ◽  
S. Czesla ◽  
J. H. M. M. Schmitt ◽  
S. Dreizler ◽  
G. Anglada-Escudé ◽  
...  

We report the detection of a Neptune-mass exoplanet around the M4.0 dwarf GJ 4276 (G 232-070) based on radial velocity (RV) observations obtained with the CARMENES spectrograph. The RV variations of GJ 4276 are best explained by the presence of a planetary companion that has a minimum mass of mb sin i ≈ 16 M⊕ on a Pb = 13.35 day orbit. The analysis of the activity indicators and spectral diagnostics exclude stellar induced RV perturbations and prove the planetary interpretation of the RV signal. We show that a circular single-planet solution can be excluded by means of a likelihood ratio test. Instead, we find that the RV variations can be explained either by an eccentric orbit or interpreted as a pair of planets on circular orbits near a period ratio of 2:1. Although the eccentric single-planet solution is slightly preferred, our statistical analysis indicates that none of these two scenarios can be rejected with high confidence using the RV time series obtained so far. Based on the eccentric interpretation, we find that GJ 4276 b is the most eccentric (eb = 0.37) exoplanet around an M dwarf with such a short orbital period known today.


2019 ◽  
Vol 621 ◽  
pp. A124 ◽  
Author(s):  
M. Benbakoura ◽  
V. Réville ◽  
A. S. Brun ◽  
C. Le Poncin-Lafitte ◽  
S. Mathis

Context.With the discovery over the last two decades of a large diversity of exoplanetary systems, it is now of prime importance to characterize star–planet interactions and how such systems evolve.Aims.We address this question by studying systems formed by a solar-like star and a close-in planet. We focus on the stellar wind spinning down the star along its main-sequence phase and tidal interaction causing orbital evolution of the systems. Despite recent significant advances in these fields, all current models use parametric descriptions to study at least one of these effects. Our objective is to introduce ab initio prescriptions of the tidal and braking torques simultaneously, so as to improve our understanding of the underlying physics.Methods.We develop a one-dimensional (1D) numerical model of coplanar circular star–planet systems taking into account stellar structural changes, wind braking, and tidal interaction and implement it in a code called ESPEM. We follow the secular evolution of the stellar rotation and of the semi-major axis of the orbit, assuming a bilayer internal structure for the former. After comparing our predictions to recent observations and models, we perform tests to emphasize the contribution of ab initio prescriptions. Finally, we isolate four significant characteristics of star–planet systems: stellar mass, initial stellar rotation period, planetary mass and initial semi-major axis; and browse the parameter space to investigate the influence of each of them on the fate of the system.Results.Our secular model of stellar wind braking accurately reproduces the recent observations of stellar rotation in open clusters. Our results show that a planet can affect the rotation of its host star and that the resulting spin-up or spin-down depends on the orbital semi-major axis and on the joint influence of magnetic and tidal effects. The ab initio prescription for tidal dissipation that we used predicts fast outward migration of massive planets orbiting fast-rotating young stars. Finally, we provide the reader with a criterion based on the characteristics of the system that allows us to assess whether or not the planet will undergo orbital decay due to tidal interaction.


2019 ◽  
Vol 628 ◽  
pp. A125 ◽  
Author(s):  
N. Meunier ◽  
A.-M. Lagrange

Context. The effect of stellar activity on radial velocity (RV) measurements appears to be a limiting factor in detecting Earth-mass planets in the habitable zone of a star that is similar to the Sun in spectral type and activity level. It is crucial to estimate whether this conclusion remain true for other stars with current correction methods. Aims. We built realistic time series in radial velocity and chromospheric emission for old main-sequence F6-K4 stars. We studied the effect of the stellar parameters we investigate on exoplanet detectability. The stellar parameters are spectral type, activity level, rotation period, cycle period and amplitude, latitude coverage, and spot constrast, which we chose to be in ranges that are compatible with our current knowledge of stellar activity. Methods. This very large set of synthetic time series allowed us to study the effect of the parameters on the RV jitter and how the different contributions to the RV are affected in this first analysis of the data set. The RV jitter was used to provide a first-order detection limit for each time series and different temporal samplings. Results. We find that the coverage in latitude of the activity pattern and the cycle amplitudes have a strong effect on the RV jitter, as has stellar inclination. RV jitter trends with B–V and Log R′HK are similar to observations, but activity cannot be responsible for RV jitter larger than 2–3 m s−1 for very quiet stars: this observed jitter is therefore likely to be due to other causes (instrumental noise or stellar or planetary companions, e.g.). Finally, we show that based on the RV jitter that is associated with each time series and using a simple criterion, a planet with one Earth mass and a period of one to two years probably cannot be detected with current analysis techniques, except for the lower mass stars in our sample, but very many observations would be required. The effect of inclination is critical. Conclusions. The results are very important in the context of future RV follow-ups of transit detections of such planets. We conclude that a significant improvement of analysis techniques and/or observing strategies must be made to reach such low detection limits.


2010 ◽  
Vol 19 (3-4) ◽  
Author(s):  
K. Černis ◽  
I. Eglitis ◽  
I. Wlodarczyk ◽  
J. Zdanavičius ◽  
K. Zdanavičius

AbstractA project for astrometric and photometric observations of asteroids at the Baldone Observatory is described. One of the most important results of the project is the discovery of 2008 OS9, a 600 meter asteroid of the NEO Apollo group. The results of its astrometric and photometric observations at the Molėtai and Baldone observatories are presented. From the brightness variation with the 0.27 mag amplitude, a rotation period of 8.430 ± 0.005 h is determined. Close approaches of the asteroid to Earth and Venus during the next millenium are predicted. The mean values of secular changes in the semi-major axis, eccentricity and inclination are computed with and without the Yarkovsky and YORP effects. A negative value of the difference between the value of semi-major axis computed with the Yarkovsky and YORP effects and without them, da/dt, may indicate retrograde rotation of the asteroid.


2018 ◽  
Vol 615 ◽  
pp. A69 ◽  
Author(s):  
M. Damasso ◽  
A. S. Bonomo ◽  
N. Astudillo-Defru ◽  
X. Bonfils ◽  
L. Malavolta ◽  
...  

Context. M-dwarf stars are promising targets for identifying and characterizing potentially habitable planets. K2-3 is a nearby (45 pc), early-type M dwarf hosting three small transiting planets, the outermost of which orbits close to the inner edge of the stellar (optimistic) habitable zone. The K2-3 system is well suited for follow-up characterization studies aimed at determining accurate masses and bulk densities of the three planets. Aims. Using a total of 329 radial velocity measurements collected over 2.5 years with the HARPS-N and HARPS spectrographs and a proper treatment of the stellar activity signal, we aim to improve measurements of the masses and bulk densities of the K2-3 planets. We use our results to investigate the physical structure of the planets. Methods. We analysed radial velocity time series extracted with two independent pipelines using Gaussian process regression. We adopted a quasi-periodic kernel to model the stellar magnetic activity jointly with the planetary signals. We used Monte Carlo simulations to investigate the robustness of our mass measurements of K2-3 c and K2-3 d, and to explore how additional high-cadence radial velocity observations might improve these values. Results. Even though the stellar activity component is the strongest signal present in the radial velocity time series, we are able to derive masses for both planet b (Mb = 6.6 ± 1.1 M⊕) and planet c (Mc = 3.1−1.2+1.3 M⊕). The Doppler signal from K2-3 d remains undetected, likely because of its low amplitude compared to the radial velocity signal induced by the stellar activity. The closeness of the orbital period of K2-3 d to the stellar rotation period could also make the detection of the planetary signal complicated. Based on our ability to recover injected signals in simulated data, we tentatively estimate the mass of K2-3 d to be Md = 2.7−0.8+1.2 M⊕ M⊕. These mass measurements imply that the bulk densities and therefore the interior structures of the three planets may be similar. In particular, the planets may either have small H/He envelopes (<1%) or massive water layers, with a water content ≥50% of their total mass, on top of rocky cores. Placing further constraints on the bulk densities of K2-3 c and d is difficult; in particular, we would not have been able to detect the Doppler signal of K2-3 d even by adopting a semester of intense, high-cadence radial velocity observations with HARPS-N and HARPS.


2018 ◽  
Vol 612 ◽  
pp. A89 ◽  
Author(s):  
A. Suárez Mascareño ◽  
R. Rebolo ◽  
J. I. González Hernández ◽  
B. Toledo-Padrón ◽  
M. Perger ◽  
...  

We aim to investigate the presence of signatures of magnetic cycles and rotation on a sample of 71 early M-dwarfs from the HADES RV programme using high-resolution time-series spectroscopy of the Ca II H&K and Hα chromospheric activity indicators, the radial velocity series, the parameters of the cross correlation function and the V -band photometry. We used mainly HARPS-N spectra, acquired over 4 yr, and add HARPS spectra from the public ESO database and ASAS photometry light-curves as support data, extending the baseline of the observations of some stars up to 12 yr. We provide log10(R′HK) measurements for all the stars in the sample, cycle length measurements for 13 stars, rotation periods for 33 stars and we are able to measure the semi-amplitude of the radial velocity signal induced by rotation in 16 stars. We complement our work with previous results and confirm and refine the previously reported relationships between the mean level of chromospheric emission, measured by the log10(R′HK), with the rotation period, and with the measured semi-amplitude of the activity induced radial velocity signal for early M-dwarfs. We searched for a possible relation between the measured rotation periods and the lengths of the magnetic cycle, finding a weak correlation between both quantities. Using previous v sin i measurements we estimated the inclinations of the star’s poles to the line of sight for all the stars in the sample, and estimate the range of masses of the planets GJ 3998 b and c (2.5–4.9 and 6.3–12.5 M⊕), GJ 625 b (2.82 M⊕), GJ 3942 b (7.1–10.0 M⊕) and GJ 15A b (3.1–3.3 M⊕), assuming their orbits are coplanar with the stellar rotation.


2018 ◽  
Vol 618 ◽  
pp. A63 ◽  
Author(s):  
M. Bonnefoy ◽  
K. Perraut ◽  
A.-M. Lagrange ◽  
P. Delorme ◽  
A. Vigan ◽  
...  

Context. The G-type star GJ504A is known to host a 3–35 MJup companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. Aims. We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. Methods. We used the CHARA interferometer to measure GJ504A’s angular diameter and obtained an estimation of its radius in combinationwith the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.02–2.25 μm) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE,Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-to-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion’sorbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. Results. We report a radius of 1.35 ± 0.04 R⊙ for GJ504A. The radius yields isochronal ages of 21 ± 2 Myr or 4.0 ± 1.8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162.4−4.3+3.8 degrees or 186.6−3.8+4.3 degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 1–4 μm SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (≤ 1.5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield Teff = 550 ± 50 K for GJ504b and point toward a low surface gravity (3.5–4.0 dex). The accuracy on the metallicity value is limited by model-to-model systematics; it is not degenerate with the C/O ratio. We derive log L∕L⊙ = −6.15 ± 0.15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and Teff yield masses of M = 1.3−0.3+0.6 MJup and M = 23−9+10 MJup for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b’s orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 MJup with semi-major axes in the range 0.01–80 au for the young and old isochronal ages, respectively. Conclusions. The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition.


Sign in / Sign up

Export Citation Format

Share Document