scholarly journals Study of central intensity ratio of early-type galaxies from low-density environment

2020 ◽  
Vol 500 (1) ◽  
pp. 1343-1349
Author(s):  
K Sruthi ◽  
C D Ravikumar

ABSTRACT We present correlations involving central intensity ratio (CIR) of 52 early-type galaxies, including 24 ellipticals and 28 lenticulars, selected from low-density environment in the nearby (<30 Mpc) universe. CIR is found to be negatively and significantly correlated with the mass of the central supermassive black hole, central velocity dispersion, absolute B-band magnitude, stellar bulge mass, and central Mg2 index of the host galaxy. The study proposes the use of CIR as a simple, fast, and efficient photometric tool for exploring the co-evolution scenario existing in galaxies.

2019 ◽  
Vol 625 ◽  
pp. A62 ◽  
Author(s):  
Sabine Thater ◽  
Davor Krajnović ◽  
Michele Cappellari ◽  
Timothy A. Davis ◽  
P. Tim de Zeeuw ◽  
...  

Different massive black hole mass – host galaxy scaling relations suggest that the growth of massive black holes is entangled with the evolution of their host galaxies. The number of measured black hole masses is still limited and additional measurements are necessary to understand the underlying physics of this apparent coevolution. We add six new black hole mass (MBH) measurements of nearby fast rotating early-type galaxies to the known black hole mass sample, namely NGC 584, NGC 2784, NGC 3640, NGC 4570, NGC 4281, and NGC 7049. Our target galaxies have effective velocity dispersions (σe) between 170 and 245 km s−1, and thus this work provides additional insight into the black hole properties of intermediate-mass early-type galaxies. We combined high-resolution adaptive-optics SINFONI data with large-scale MUSE, VIMOS and SAURON data from ATLAS3D to derive two-dimensional stellar kinematics maps. We then built both Jeans Anisotropic Models and axisymmetric Schwarzschild models to measure the central black hole masses. Our Schwarzschild models provide black hole masses of (1.3 ± 0.5) × 108 M⊙ for NGC 584, (1.0 ± 0.6) × 108 M⊙ for NGC 2784, (7.7 ± 5) × 107 M⊙ for NGC 3640, (5.4 ± 0.8) × 108 M⊙ for NGC 4281, (6.8 ± 2.0) × 107 M⊙ for NGC 4570, and (3.2 ± 0.8) × 108 M⊙ for NGC 7049 at 3σ confidence level, which are consistent with recent MBH−σe scaling relations. NGC 3640 has a velocity dispersion dip and NGC 7049 a constant velocity dispersion in the center, but we can clearly constrain their lower black hole mass limit. We conclude our analysis with a test on NGC 4570 taking into account a variable mass-to-light ratio (M/L) when constructing dynamical models. When considering M/L variations linked mostly to radial changes in the stellar metallicity, we find that the dynamically determined black hole mass from NGC 4570 decreases by 30%. Further investigations are needed in the future to account for the impact of radial M/L gradients on dynamical modeling.


2009 ◽  
Vol 400 (4) ◽  
pp. 1803-1807 ◽  
Author(s):  
Y. Watabe ◽  
N. Kawakatu ◽  
M. Imanishi ◽  
T. T. Takeuchi

2009 ◽  
Vol 5 (S267) ◽  
pp. 421-428
Author(s):  
Philip F. Hopkins

AbstractRecent observations of tight correlations between supermassive black hole masses and the properties of their host galaxies demonstrate that black holes and bulges are co-eval and have motivated theoretical models in which feedback from AGN activity regulates the black hole and host galaxy evolution. Combining simulations, analytic models, and recent observations, answers to a number of questions are starting to take shape: how do AGN get triggered? How long do they live? What are typical light curves and what sets them? Is feedback necessary and/or sufficient to regulate BH growth? What effects does that feedback have on the host galaxy? On the host halo? All of this also highlights questions that remain wide open: how does gas get from a few pc to the AGN? What are the actual microphysical mechanisms of feedback? What is the tradeoff between stellar and AGN feedback? And, if there are different “modes” of feedback, where/when are each important?


2017 ◽  
Vol 602 ◽  
pp. A103 ◽  
Author(s):  
N. A. Webb ◽  
A. Guérou ◽  
B. Ciambur ◽  
A. Detoeuf ◽  
M. Coriat ◽  
...  

Aims. ESO 243-49 HLX-1, otherwise known as HLX-1, is an intermediate mass black hole (IMBH) candidate located 8′′ (3.7 Kpc) from the centre of the edge-on S0 galaxy ESO 243-49. How the black hole came to be associated with this galaxy, and the nature of the environment in which it resides, remain unclear. Using multi-wavelength observations we aim to investigate the nature of the medium surrounding HLX-1, search for evidence of past mergers with ESO 243-49 and constrain parameters of the galaxy, including the mass of the expected central supermassive black hole, essential for future modelling of the interaction of the IMBH and ESO 243-49. Methods. We have reduced and analysed integral field unit observations of ESO 243-49 that were taken with the MUSE instrument on the VLT. Using complementary multi-wavelength data, including X-shooter, HST, Swift, Chandra and ATCA data, we have further examined the vicinity of HLX-1. We additionally examined the nature of the host galaxy and estimate the mass of the central supermassive black hole in ESO 243-49 using (black hole mass)–(host spheroid) scaling relations and the fundamental plane of black hole activity. Results. No evidence for a recent minor-merger that could result in the presence of the IMBH is discerned, but the data are compatible with a scenario in which minor mergers may have occurred in the history of ESO 243-49. The MUSE data reveal a rapidly rotating disc in the centre of the galaxy, around the supermassive black hole. The mass of the supermassive black hole at the centre of ESO 243-49 is estimated to be 0.5−23 × 107M⊙. Studying the spectra of HLX-1, that were taken in the low and hard state, we determine Hα flux variability to be at least a factor 6, compared to observations taken during the high and soft state. This Hα flux variability over one year indicates that the line originates close to the intermediate mass black hole, excluding the possibility that the line emanates from a surrounding nebula or a star cluster. The large variability associated with the X-ray states of HLX-1 confirms that the Hα line is associated with the object and therefore validates the distance to HLX-1.


2007 ◽  
Vol 665 (1) ◽  
pp. 120-156 ◽  
Author(s):  
M. C. Aller ◽  
D. O. Richstone

2007 ◽  
Vol 3 (S245) ◽  
pp. 253-254
Author(s):  
N. Nowak ◽  
R. P. Saglia ◽  
J. Thomas ◽  
P. Erwin ◽  
R. Bender

AbstractOver the past decade we have learned that probably all ellipticals and bulges contain a central supermassive black hole (SMBH). The mass of the SMBH correlates both with the mass of the bulge component (about 0.15% of the bulge mass) and with the velocity dispersion σ of the bulge. We are investigating whether these relations remain valid or how they change when galaxies with pseudobulges, very low-mass bulges or bulgeless galaxies are considered. Studying SMBH relations for both classical bulges and pseudobulges can reveal the importance of different growing mechanisms (mergers vs. secular evolution) for the evolution of SMBHs. Low-mass classical bulges and bulgeless galaxies may harbour seed black holes in their earliest evolutionary stages, and studying them is of paramount importance for understanding the link between bulge evolution and black hole growth.


2009 ◽  
Vol 696 (1) ◽  
pp. 1051-1062 ◽  
Author(s):  
Gaku Kiuchi ◽  
Kouji Ohta ◽  
Masayuki Akiyama

Sign in / Sign up

Export Citation Format

Share Document