scholarly journals A theoretical scenario for Galactic RR Lyrae in the Gaia data base: constraints on the parallax offset

2020 ◽  
Vol 500 (4) ◽  
pp. 5009-5023
Author(s):  
M Marconi ◽  
R Molinaro ◽  
V Ripepi ◽  
S Leccia ◽  
I Musella ◽  
...  

ABSTRACT On the basis of an extended set of non-linear convective RR Lyrae pulsation models we derive the first theoretical light curves in the Gaia bands G, GBP, and GRP and the corresponding intensity-weighted mean magnitudes and pulsation amplitudes. The effects of chemical composition on the derived Bailey diagrams in the Gaia filters are discussed for both Fundamental and first overtone mode pulsators. The inferred mean magnitudes and colours are used to derive the first theoretical Period–Wesenheit relations for RR Lyrae in the Gaia filters. The application of the theoretical Period–Wesenheit relations for both the Fundamental and first overtone mode to Galactic RR Lyrae in the Gaia Data Release 2 data base and complementary information on individual metal abundances allows us to derive theoretical estimates of their individual parallaxes. These results are compared with the astrometric solutions to conclude that a very small offset, consistent with zero, is required in order to reconcile the predicted distances with Gaia results.

1985 ◽  
Vol 82 ◽  
pp. 153-156
Author(s):  
C. G. Davis

Starting with the initial understanding that pulsation in variable stars is caused by the heat engine of Hydrogen and Helium ionization in their atmospheres (A.S. Eddington in Cox 1980) it was soon realized that non-linear effects were responsible for the detailed features on their light and velocity curves. With the advent of the computer we were able to solve the coupled set of hydrodynamics and radiation diffusion equations to model these non-linear features (Christy 1968, Cox et. al. 1966). Calculations including the effects of multi-frequency radiative transfer (Davis 1975) showed that grey diffusion was adequate for modeling Cepheids but not for the RR Lyrae or W Virginis type variables.


2018 ◽  
Vol 620 ◽  
pp. A127 ◽  
Author(s):  
László Molnár ◽  
Emese Plachy ◽  
Áron L. Juhász ◽  
Lorenzo Rimoldini

Context. The second data release of the Gaia mission (DR2) includes an advance catalogue of variable stars. The classifications of these stars are based on sparse photometry from the first 22 months of the mission. Aims. We set out to investigate the purity and completeness of the all-sky Gaia classification results with the help of the continuous light curves of the observed targets from the Kepler and K2 missions, focusing specifically on RR Lyrae and Cepheid pulsators, outside the Galactic bulge region. Methods. We cross-matched the Gaia identifications with the observations collected by the Kepler space telescope. We inspected the light curves visually, then calculated the relative Fourier coefficients and period ratios for the single- and double-mode K2 RR Lyrae stars to further classify them. Results. We identified 1443 and 41 stars classified as RR Lyrae or Cepheid variables in Gaia DR2 in the targeted observations of the two missions and 263 more RR Lyre targets in the full-frame images (FFI) of the original mission. We provide the cross-match of these sources. We conclude that the RR Lyrae catalogue has a completeness between 70–78%, and provide a purity estimate of between 92 and 98% (targeted observations) with lower limits of 75% (FFI stars) and 51% (K2 worst-case scenario). The low number of Cepheids prevents us from drawing detailed conclusions, but the purity of the DR2 sample is estimated to be about 66%.


2020 ◽  
Vol 499 (4) ◽  
pp. 5782-5790
Author(s):  
Eran O Ofek ◽  
Maayane Soumagnac ◽  
Guy Nir ◽  
Avishay Gal-Yam ◽  
Peter Nugent ◽  
...  

ABSTRACT Variable sources probe a wide range of astrophysical phenomena. We present a catalogue of over 10 million variable source candidates found in Data Release 1 (DR1) of the Zwicky Transient Facility (ZTF). We perform a periodicity search up to a frequency of 160 d−1, and we classify the light curves into erratic and smooth variables. We also present variability indicators and the results of a periodicity search, up to a frequency of 5 d−1, for about 1 billion sources in the ZTF-DR1 light curve data base. We present several new short-period (<90 min) candidates, and about 60 new dwarf nova candidates, including two candidate eclipsing systems. Both the 10 million variables catalogue and ∼1 billion source catalogue are available online in catsHTM format.


2012 ◽  
Vol 423 (2) ◽  
pp. 993-1005 ◽  
Author(s):  
J. Jurcsik ◽  
Á. Sódor ◽  
G. Hajdu ◽  
B. Szeidl ◽  
Á. Dózsa ◽  
...  

Abstract The analysis of recent, extended multicolour CCD and archive photoelectric, photographic and visual observations has revealed several important properties of RZ Lyr, an RRab-type variable exhibiting large-amplitude Blazhko modulation. On the time base of ∼110 yr, a strict anticorrelation between the pulsation- and modulation-period changes is established. The light curve of RZ Lyr shows a remarkable bump on the descending branch in the small-amplitude phase of the modulation, similarly to the light curves of bump Cepheids. We speculate that the stellar structure temporally suits a 4:1 resonance between the periods of the fundamental and one of the higher order radial modes in this modulation phase. The light-curve variation of RZ Lyr can be correctly fitted with a two-modulation-component solution; the 121-d period of the main modulation is nearly but not exactly four times longer than the period of the secondary modulation component. Using the inverse photometric method, the variations in the pulsation-averaged values of the physical parameters in different phases of both modulation components are determined.


1989 ◽  
Vol 111 ◽  
pp. 287-287
Author(s):  
Amelia Wehlau

AbstractAttention is called to the rather unusual distribution of the periods of the RR Lyrae variables in NGC 5897, a metal-poor halo globular cluster with a very low central concentration. Of the seven RR Lyrae stars known in the cluster, three have periods between 0.797 and 0.856 day and two have periods of 0.45 and 0.42 day. The other two have periods of 0.34 and 0.35 day with much lower amplitudes of variation. Due to the lack of crowding in this cluster photoelectric observations and Fourier decompositions of the resulting light curves should be possible for at least six of the RR Lyrae variables. In addition, the cluster appears to contain a non-variable horizontal branch star, SK 120, lying within the instability strip. As this is the only well documented case of such a star, photoelectric observations of this star would also be desirable.


1975 ◽  
Vol 67 ◽  
pp. 541-543
Author(s):  
A. V. Mironov ◽  
N. N. Samus'

The dependences of the numbers of variable stars in globular clusters on the chemical composition are studied. For given metallicity the numbers of RR Lyrae stars reduced to some definite total number of stars in the cluster are different for the two groups of globular clusters introduced by Mironov.


2002 ◽  
Vol 185 ◽  
pp. 418-419
Author(s):  
L. Szabados

AbstractDuring the study of the factors governing the modal amplitudes of the double-mode radial pulsators, it has been found that the R21 Fourier parameter deduced from the light curves is in a relationship with the ratio of the modal amplitudes, for beat Cepheids and RR Lyrae variables, as well. The form of this relation gives a natural explanation for the fact that double-mode pulsators with slightly excited second modes do not exist.


2000 ◽  
Vol 176 ◽  
pp. 172-175 ◽  
Author(s):  
G. Clementini ◽  
A. Bragaglia ◽  
L. Di Fabrizio ◽  
E. Carretta ◽  
R. G. Gratton

AbstractThe Large Magellanic Cloud (LMC) is widely considered a corner-stone of the astronomical distance scale. However, a difference of 0.2−0.3 mag exists in its distance as predicted by the short and long distance scales. Distances to the LMC from Population II objects are founded on the RR Lyrae variables. We have undertaken an observational campaign devoted to the definition of the average apparent luminosity, and to the study of the mass–metallicity relation for RR Lyrae stars in the bar of the LMC. These are compared with analogous quantities for cluster RR Lyrae stars. The purpose is to see whether an intrinsic difference in luminosity, possibly due to a difference in mass, might exist between field and cluster RR Lyrae stars, which could be responsible for the well-known dichotomy between short and long distance scales. Preliminary results are presented on the V and B − V light curves, the average apparent visual magnitude, and the pulsational properties of 102 RR Lyrae stars in the bar of the LMC, observed at ESO in January 1999. The photometric data are accurately tied to the Johnson photometric system. Comparison is presented with the photometry of RR Lyrae stars in the bar of the LMC obtained by the MACHO collaboration (Alcock et al. 1996). Our sample includes 9 double-mode RR Lyrae stars selected from Alcock et al. (1997) for which an estimate of the metal abundance from the ΔS method is presented.


2019 ◽  
Vol 623 ◽  
pp. A156 ◽  
Author(s):  
H. E. Delgado ◽  
L. M. Sarro ◽  
G. Clementini ◽  
T. Muraveva ◽  
A. Garofalo

In a recent study we analysed period–luminosity–metallicity (PLZ) relations for RR Lyrae stars using theGaiaData Release 2 (DR2) parallaxes. It built on a previous work that was based on the firstGaiaData Release (DR1), and also included period–luminosity (PL) relations for Cepheids and RR Lyrae stars. The method used to infer the relations fromGaiaDR2 data and one of the methods used forGaiaDR1 data was based on a Bayesian model, the full description of which was deferred to a subsequent publication. This paper presents the Bayesian method for the inference of the parameters ofPL(Z) relations used in those studies, the main feature of which is to manage the uncertainties on observables in a rigorous and well-founded way. The method encodes the probability relationships between the variables of the problem in a hierarchical Bayesian model and infers the posterior probability distributions of thePL(Z) relationship coefficients using Markov chain Monte Carlo simulation techniques. We evaluate the method with several semi-synthetic data sets and apply it to a sample of 200 fundamental and first-overtone RR Lyrae stars for whichGaiaDR1 parallaxes and literatureKs-band mean magnitudes are available. We define and test several hyperprior probabilities to verify their adequacy and check the sensitivity of the solution with respect to the prior choice. The main conclusion of this work, based on the test with semi-syntheticGaiaDR1 parallaxes, is the absolute necessity of incorporating the existing correlations between the period, metallicity, and parallax measurements in the form of model priors in order to avoid systematically biased results, especially in the case of non-negligible uncertainties in the parallaxes. The relation coefficients obtained here have been superseded by those presented in our recent paper that incorporates the findings of this work and the more recentGaiaDR2 measurements.


Sign in / Sign up

Export Citation Format

Share Document