scholarly journals Star formation history of the solar neighbourhood as told by Gaia

2020 ◽  
Vol 501 (1) ◽  
pp. 302-328
Author(s):  
Jairo A Alzate ◽  
Gustavo Bruzual ◽  
Daniel J Díaz-González

ABSTRACT The Gaia data release 2 (DR2) catalogue is the best source of stellar astrometric and photometric data available today. The history of the Milky Way galaxy is written in stone in this data set. Parallaxes and photometry tell us where the stars are today, when were they formed, and with what chemical content, that is, their star formation history (SFH). We develop a Bayesian hierarchical model suited to reconstruct the SFH of a resolved stellar population. We study the stars brighter than $G\, =\, 15$ within 100 pc of the Sun in Gaia DR2 and derive an SFH of the solar neighbourhood in agreement with previous determinations and improving upon them because we detect chemical enrichment. Our results show a maximum of star formation activity about 10 Gyr ago, producing large numbers of stars with slightly below solar metallicity (Z  =  0.014), followed by a decrease in star formation up to a minimum level occurring around 8 Gyr ago. After a quiet period, star formation rises to a maximum at about 5 Gyr ago, forming stars of solar metallicity (Z  =  0.017). Finally, star formation has been decreasing until the present, forming stars of Z  =  0.03 at a residual level. We test the effects introduced in the inferred SFH by ignoring the presence of unresolved binary stars in the sample, reducing the apparent limiting magnitude, and modifying the stellar initial mass function.

2019 ◽  
Vol 15 (S359) ◽  
pp. 386-390
Author(s):  
Lucimara P. Martins

AbstractWith the exception of some nearby galaxies, we cannot resolve stars individually. To recover the galaxies star formation history (SFH), the challenge is to extract information from their integrated spectrum. A widely used tool is the full spectral fitting technique. This consists of combining simple stellar populations (SSPs) of different ages and metallicities to match the integrated spectrum. This technique works well for optical spectra, for metallicities near solar and chemical histories not much different from our Galaxy. For everything else there is room for improvement. With telescopes being able to explore further and further away, and beyond the optical, the improvement of this type of tool is crucial. SSPs use as ingredients isochrones, an initial mass function, and a library of stellar spectra. My focus are the stellar libraries, key ingredient for SSPs. Here I talk about the latest developments of stellar libraries, how they influence the SSPs and how to improve them.


2015 ◽  
Vol 12 (S316) ◽  
pp. 77-83
Author(s):  
Michele Cignoni ◽  

AbstractI will present new results on the star formation history of 30 Doradus in the Large Magellanic Cloud based on the panchromatic imaging survey Hubble Tarantula Treasury Project (HTTP). Here the focus is on the starburst cluster NGC2070. The star formation history is derived by comparing the deepest ever optical and NIR color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PARSEC models, which include all stellar phases from pre-main sequence to post-main sequence. For the first time in this region we are able to measure the star formation using intermediate and low mass stars simultaneously. Our results suggest that NGC2070 experienced a prolonged activity. I will discuss the detailed star formation history, initial mass function and reddening distribution.


2019 ◽  
Vol 489 (2) ◽  
pp. 2377-2394 ◽  
Author(s):  
A Sollima

Abstract I use a sample of more than 120 000 stars in the solar neighbourhood, with parallaxes, magnitudes and colours estimated with unprecedented accuracy by the second data release of the Gaia mission, to derive the initial mass function of the Galactic disc. A full-forward technique is used to take into account, for the population of unresolved binaries, the metallicity distribution and the star formation history, including their variation across the Galactic disc, as well as all the observational effects. The shape of the initial mass function is well represented by a segmented power law with two breaks at characteristic masses. It has a maximum at M ∼ 0.15 M⊙ with significant flattening (possibly a depletion) at lower masses and a slope of α = −1.34 ± 0.07 in the range 0.25 < M/M⊙ < 1. Above 1 M⊙, the initial mass function shows an abrupt decline with a slope ranging from α = −2.68 ± 0.09 to α = −2.41 ± 0.11, depending on the adopted resolution of the star formation history.


2017 ◽  
Vol 12 (S330) ◽  
pp. 148-151 ◽  
Author(s):  
Edouard J. Bernard

AbstractWe took advantage of the Gaia DR1 to combine TGAS parallaxes with Tycho-2 and APASS photometry to calculate the star formation history (SFH) of the solar neighbourhood within 250 pc using the colour-magnitude diagram fitting technique. We present the determination of the completeness within this volume, and compare the resulting SFH with that calculated from the Hipparcos catalogue within 80 pc of the Sun. We also show how this technique will be applied out to ~5 kpc thanks to the next Gaia data releases, which will allow us to quantify the SFH of the thin disc, thick disc and halo in situ, rather than extrapolating based on the stars from these components that are today in the solar neighbourhood.


1999 ◽  
Vol 192 ◽  
pp. 151-157
Author(s):  
C. Gallart ◽  
W. L. Freedman

We advance some results of our study of the star formation history of the Local Group dSph galaxy Leo I, obtained through the analysis of its deep HST color-magnitude diagram (CMD) using model CMDs computed from stellar evolutionary models. We conclude that most star formation (≃ 90%) took place in Leo I between 7 and 1 Gyr ago. It seems to have started at a very low rate ≃ 15 Gyr ago and continued, also at a very low rate, from 1 Gyr ago until the present time. A constant Z=0.0004 and a large fraction of binary stars are required to obtain the best agreement with both the distribution of stars across the CMD and with its morphology. An IMF like the one obtained by Kroupa et al. (1993) for the solar neighborhood, or steeper, is compatible with the data.


2017 ◽  
Vol 13 (S334) ◽  
pp. 158-161
Author(s):  
Edouard J. Bernard

AbstractTaking advantage of the Gaia DR1, we combined TGAS parallaxes with the Tycho-2 and APASS photometry to calculate the star formation history (SFH) of the solar neighbourhood within 250 pc using the colour-magnitude diagram fitting technique. Our dynamically-evolved SFH is in excellent agreement with that calculated from the Hipparcos catalogue within 80 pc of the Sun, showing an enhanced star formation rate (SFR) in the past ~4 Gyr. We then correct the SFR for the disc thickening with age to obtain a SFR that is representative of the whole solar cylinder, and show that even with an extreme correction our results are not consistent with an exponentially decreasing SFR as found by recent studies. Finally, we discuss how this technique can be applied out to ~5 kpc thanks to the next Gaia data releases, which will allow us to quantify the SFH of the thin disc, thick disc and halo in situ.


2017 ◽  
Vol 13 (S334) ◽  
pp. 310-311
Author(s):  
Andreas Just ◽  
Kseniia Sysoliatina

AbstractWe used our detailed analytic local disc model to compare predictions in number counts, colour distribuitons and kinematics with a data set extracted from a combination of TGAS and RAVE catalogues. We find generally a very good agreement with some deviations close to the Galactic plane.


Sign in / Sign up

Export Citation Format

Share Document