scholarly journals Chemical abundances of Seyfert 2 AGNs – IV. Composite models calculated by photoionization + shocks

2020 ◽  
Vol 501 (1) ◽  
pp. 1370-1383
Author(s):  
O L Dors ◽  
M Contini ◽  
R A Riffel ◽  
E Pérez-Montero ◽  
A C Krabbe ◽  
...  

ABSTRACT We build detailed composite models of photoionization and shock ionization based on the suma code to reproduce emission lines emitted from the Narrow Line Regions (NLR) of Seyfert 2 nuclei. The aim of this work is to investigate diagram active galactic nucleus (AGN) positions according to shock parameters, shock effects on the gas temperature and ionization structures and derive a semi-empirical abundance calibration based on emission-line ratios little sensitive to the shock presence. The models were used to reproduce optical (3000 < λ(Å) < 7000) emission line intensities of 244 local ($z \: \lesssim \: 0.4$) Seyfert 2s, whose observational data were selected from Sloan Digital Sky Survey DR7. Our models suggest that shocks in Seyfert 2 nuclei have velocities in the range of 50–300 $\rm km \: s^{-1}$ and imply a narrower metallicity range ($0.6 \: \lesssim \: (Z/Z_{\odot }) \: \lesssim \: 1.6$) than those derived using pure photoionization models. Our results indicate that shock velocity in AGNs cannot be estimated using standard optical line ratio diagrams, based on integrated spectra. Our models predict a different temperature structure and $\rm O^{+}$/O and $\rm O^{2+}$/O fractional abundances throughout the NLR clouds than those derived from pure photoionization models, mainly in shock-dominated objects. This suggests that, in order to minimize the shock effects, the combination of emission-lines emitted by ions with similar intermediate ionization potential could be good metallicity indicators. Finally, we derive two calibrations between the N/O abundance ratio and the N2O2 = log([N ii]λ6584/[O ii]λ3727) and N2 = log([N ii]λ6584/H α) indexes which agree with that derived from pure photoionization models.

2020 ◽  
Vol 492 (4) ◽  
pp. 5675-5683 ◽  
Author(s):  
S P Carvalho ◽  
O L Dors ◽  
M V Cardaci ◽  
G F Hägele ◽  
A C Krabbe ◽  
...  

ABSTRACT We present a semi-empirical calibration between the metallicity (Z) of Seyfert 2 active galactic nuclei and the N2 = log([N ii]λ6584/H α) emission-line intensity ratio. This calibration was derived through the [O iii]λ5007/[O ii]λ3727 versus N2 diagram containing observational data and photoionization model results obtained with the cloudy code. The observational sample consists of 463 confirmed Seyfert 2 nuclei (redshift $z \: \lesssim 0.4$) taken from the Sloan Digital Sky Survey DR7 data set. The obtained Z–N2 relation is valid for the range $0.3 \: \lesssim \: (Z/{\rm Z}_{\odot }) \: \lesssim \: 2.0$ that corresponds to $-0.7 \: \lesssim \: ({\rm N}2) \: \lesssim \: 0.6$. The effects of varying the ionization parameter (U), electron density and the slope of the spectral energy distribution on the Z estimations are of the order of the uncertainty produced by the error measurements of N2. This result indicates the large reliability of our Z –N2 calibration. A relation between U and the [O iii]/[O ii] line ratio, almost independent of other nebular parameter, was obtained.


2020 ◽  
Vol 495 (4) ◽  
pp. 4707-4746
Author(s):  
M Silva ◽  
A Humphrey ◽  
P Lagos ◽  
S G Morais

ABSTRACT We study the ultraviolet (UV) emission-line ratios of a sample of 145 type II quasars (QSO2s) from Sloan Digital Sky Survey iii Baryon Oscillation Spectroscopic Survey, and compare against a grid of active galactic nucleus (AGN) photoionization models with a range in gas density, gas chemical abundances, and ionization parameter. Most of the quasars are ‘carbon-loud’, with C  iv/He ii ratios that are unusually high for the narrow-line region, implying higher than expected gas density (>106 cm−3) and/or significantly supersolar-relative carbon abundance. We also find that solar or supersolar nitrogen abundance and metallicity are required in the majority of our sample, with potentially significant variation between objects. Compared to radio galaxies at similar redshifts (HzRGs; z > 2), the QSO2s are offset to higher N  v/He ii, C  iv/He ii, and C iii]/He ii, suggesting systematically higher gas density and/or systematically higher C and N abundances. We find no evidence for a systematic difference in the N/C abundance ratio between the two types of objects. Scatter in the N  iv]/C  iv ratio implies a significant scatter in the N/C abundance ratio among the QSO2s and HzRGs, consistent with differences in the chemical enrichment histories between objects. Interestingly, we find that adopting secondary behaviour for both N and C alleviates the long-standing ‘N  iv] problem’. A subset of the QSO2s and HzRGs also appear to be ‘silicon-loud’, with Si iii] relative fluxes suggesting Si/C and Si/O are an order of magnitude above their solar values. Finally, we propose new UV-line criteria to select genuine QSO2s with low-density narrow-line regions.


2019 ◽  
Vol 625 ◽  
pp. A56 ◽  
Author(s):  
Romain A. Meyer ◽  
Timothée Delubac ◽  
Jean-Paul Kneib ◽  
Frédéric Courbin

We present a sample of 12 quasi-stellar objects (QSOs) that potentially act as strong gravitational lenses on background emission line galaxies (ELG) or Lyman-α emitters (LAEs) selected through a systematic search of the 297 301 QSOs in the Sloan Digital Sky Survey (SDSS)-III Data Release 12. Candidates were identified by looking for compound spectra, where emission lines at a redshift larger than that of the quasar can be identified in the residuals after a QSO spectral template is subtracted from the observed spectra. The narrow diameter of BOSS fibers (2″) then ensures that the object responsible for the additional emission lines must lie close to the line of sight of the QSO and hence provides a high probability of lensing. Among the 12 candidates identified, nine have definite evidence for the presence of a background ELG identified by at least four higher-redshift nebular emission lines. The remaining three probable candidates present a strong asymmetrical emission line attributed to a background Lyman-α emitter (LAE). The QSO-ELG (QSO-LAE) lens candidates have QSO lens redshifts in the range 0.24 ≲ zQSO ≲ 0.66 (0.75 ≲ zQSO ≲ 1.23 ) and background galaxy redshifts in the range 0.48 ≲ zS, ELG ≲ 0.94 (2.17 ≲ zS, LAE ≲ 4.48). We show that the algorithmic search is complete at > 90% for QSO-ELG systems, whereas it falls at 40−60% for QSO-LAE, depending on the redshift of the source. Upon confirmation of the lensing nature of the systems, this sample may quadruple the number of known QSOs acting as strong lenses. We have determined the completeness of our search, which allows future studies to compute lensing probabilities of galaxies by QSOs and differentiate between different QSO models. Future imaging of the full sample and lens modelling offers a unique approach to study and constrain key properties of QSOs.


2021 ◽  
Vol 508 (1) ◽  
pp. 371-391
Author(s):  
Mark Armah ◽  
O L Dors ◽  
C P Aydar ◽  
M V Cardaci ◽  
G F Hägele ◽  
...  

ABSTRACT For the first time, neon abundance has been derived in the narrow line region from a sample of Seyfert 2 nuclei. In view of this, we compiled from the literature fluxes of optical and infrared (IR) narrow emission lines for 35 Seyfert 2 nuclei in the local universe ($z \:\lesssim \:0.06$). The relative intensities of emission lines were used to derive the ionic and total neon and oxygen abundances through electron temperature estimations (Te-method). For the neon, abundance estimates were obtained by using both Te-method and IR-method. Based on photoionization model results, we found a lower electron temperature [$t_{\rm e}({\rm Ne\, \small {III}})$] for the gas phase where the Ne2 + is located in comparison with t3 for the O2 + ion. We find that the differences (D) between Ne2 +/H+ ionic abundances calculated from IR-method and Te-method (assuming t3 in the Ne2 +/H+ derivation) are similar to the derivations in star-forming regions (SFs) and they are reduced by a mean factor of ∼3 when $t_{\rm e}({\rm Ne\, \small {III}})$ is considered. We propose a semi-empirical Ionization Correction Factor (ICF) for the neon, based on [Ne ii]12.81$\rm{\mu m}$, [Ne iii]15.56$\rm{\mu m}$, and oxygen ionic abundance ratios. We find that the average Ne/H abundance for the Seyfert 2s sample is nearly 2 times higher than similar estimate for SFs. Finally, for the very high metallicity regime (i.e. [$\rm 12+log(O/H)\: \gtrsim \: 8.80$]) an increase in Ne/O with O/H is found, which likely indicates secondary stellar production for the neon.


2019 ◽  
Vol 492 (1) ◽  
pp. 468-479 ◽  
Author(s):  
O L Dors ◽  
P Freitas-Lemes ◽  
E B Amôres ◽  
E Pérez-Montero ◽  
M V Cardaci ◽  
...  

ABSTRACT We compare the oxygen abundance (O/H) of the narrow-line regions (NLRs) of Seyfert 2 AGNs obtained through strong-line methods and from direct measurements of the electron temperature (Te-method). The aim of this study is to explore the effects of the use of distinct methods on the range of metallicity and on the mass–metallicity relation of active galactic nuclei (AGNs) at low redshifts (z ≲ 0.4). We used the Sloan Digital Sky Survey (SDSS) and NASA/IPAC Extragalactic Database (NED) to selected optical (3000 < λ(Å) < 7000) emission line intensities of 463 confirmed Seyfert 2 AGNs. The oxygen abundances of the NLRs were estimated using the theoretical Storchi-Bergmann et al. calibrations, the semi-empirical N2O2 calibration, the Bayesian H  ii-Chi-mistry code and the Te-method. We found that the oxygen abundance estimations via the strong-line methods differ from each other up to ∼0.8 dex, with the largest discrepancies in the low-metallicity regime ($\rm 12+\log (O/H) \: \lesssim \: 8.5$). We confirmed that the Te-method underestimates the oxygen abundance in NLRs, producing unreal subsolar values. We did not find any correlation between the stellar mass of the host galaxies and the metallicity of their AGNs. This result is independent of the method used to estimate Z.


2016 ◽  
Vol 12 (S323) ◽  
pp. 333-334
Author(s):  
Nazim Aksaker ◽  
Sinan K. Yerli ◽  
Ümit Kızıloğlu ◽  
Betül Atalay

AbstractIn this work, we present results of long slit spectrophotometric emission line flux observations of selected planetary nebulae (PNe). We have measured absolute fluxes and equivalent widths (EW) of all observable emission lines. In addition to these observations, electron temperatures (Te), densities (Ne), and chemical abundances were also calculated. The main purpose of this work is to fill the gaps in emission line flux standards for the northern hemisphere. It is expected that the measured fluxes would be used as standard data set for further photometric and spectrometric measurements of HII regions, supernova remnants etc.


2015 ◽  
Vol 5 (1) ◽  
pp. 39-42
Author(s):  
K. Vovk

We examined all of the galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to select those with a detected OIII λ4363 emission line, which allows to derive electron temperatures in HII regions and element abundances by the direct method. We selected two sub-samples of galaxies: one with detected WR features in their spectra, and the other with the nebular HeII λ4686 emission line. We confirm the increase of the N/O abundance ratio with decrease of the equivalent width EW(Hβ) of the Hβ emission line. This result is explained by gradual nitrogen enrichment of the interstellar medium by ejecta from massive stars in the most recent starburst episode.


Author(s):  
A F Monteiro ◽  
O L Dors

Abstract For the first time, the argon abundance relative to hydrogen abundance (Ar/H) in the narrow line region of a sample of Seyfert 2 nuclei has been derived. In view of this, optical narrow emission line intensities of a sample of 64 local Seyfert 2 nuclei (z < 0.25) taken from Sloan Digital Sky Survey DR7 and measured by the MPA/JHU group were considered. We adopted the Te-method for AGNs, which is based on direct determination of the electron temperature, together with a grid of photoionization model results, built with the Cloudy code, to obtain a method for the derivation of the Ar/H abundance. We find that for a metallicity range of $\rm 0.2 \: \lesssim \: (Z/{\rm Z_{\odot }}) \: \lesssim \: 2.0$, Seyfert 2 nuclei present Ar/H abundance ranging from ∼0.1 to ∼3 times the argon solar value, adopting $\rm log(O/H)_{\odot }=-3.31$ and $\rm log(Ar/H)_{\odot }=-5.60$. These range of values correspond to $\rm 8.0 \: \lesssim \: (12+log(O/H) \: \lesssim \: 9.0$ and $\rm 5.4 \: \lesssim \: (12+log(Ar/H) \: \lesssim \: 6.9$, respectively. The range of Ar/H and Ar/O abundance values obtained from our sample are in consonance with estimations from extrapolations of the radial abundance gradients to the central parts of the disk for four spiral galaxies. We combined our abundance results with estimates obtained from a sample of H ii galaxies, which were taken from the literature, and found that the Ar/O abundance ratio decreases slightly as the O/H abundance increases.


2019 ◽  
Vol 623 ◽  
pp. A40 ◽  
Author(s):  
Y. I. Izotov ◽  
N. G. Guseva ◽  
K. J. Fricke ◽  
C. Henkel

We present a sample of low-redshift (z <  0.133) candidates for extremely low-metallicity star-forming galaxies with oxygen abundances 12 + log O/H <  7.4 selected from the Data Release 14 (DR14) of the Sloan Digital Sky Survey (SDSS). Three methods are used to derive their oxygen abundances. Among these methods two are based on strong [O II]λ3727 Å, [O III]λ4959 Å, and [O III]λ5007 Å emission lines, which we call strong-line and semi-empirical methods. These were applied for all galaxies. We have developed one of these methods, the strong-line method, in this paper. This method is specifically focused on the accurate determination of metallicity in extremely low-metallicity galaxies and may not be used at higher metallicities with 12 + log O/H ≳ 7.5. The third, the direct Te method, was applied for galaxies with detected [O III]λ4363 emission lines. All three methods give consistent abundances and can be used in combination or separately for selection of lowest-metallicity candidates. However, the strong-line method is preferable for spectra with a poorly detected or undetected [O III]λ4363 emission line. In total, our list of selected candidates for extremely low-metallicity galaxies includes 66 objects.


2009 ◽  
Vol 5 (S267) ◽  
pp. 144-144
Author(s):  
N. Vale Asari ◽  
G. Stasińska ◽  
R. Cid Fernandes ◽  
J. M. Gomes ◽  
M. Schlickmann ◽  
...  

Various studies have shown that there is an empirical relation between the nebular metallicity of a galaxy and its stellar mass. Until now, most studies of the mass-metallicity relation (M–Z) have focused on the abundances of the interstellar medium as measured by emission-line features. This technique thus excludes galaxies with AGN from the working samples, due to the difficulty to measure the nebular abundances when emission-lines are powered both by stars and AGN. With our synthesis code starlight, we are able to recover the stellar metallicities of galaxies from the Sloan Digital Sky Survey (SDSS). Therefore, although we still cannot measure the nebular metallicity in AGN hosts, we know their present-day stellar metallicities. Moreover, because we measure the metallicity of stellar populations of different ages in a galaxy, we are also able also recover the history of its chemical enrichment.


Sign in / Sign up

Export Citation Format

Share Document