scholarly journals Inference on accretion flow properties of XTE J1752-223 during its 2009-10 outburst

2020 ◽  
Vol 493 (2) ◽  
pp. 2452-2462 ◽  
Author(s):  
Kaushik Chatterjee ◽  
Dipak Debnath ◽  
Debjit Chatterjee ◽  
Arghajit Jana ◽  
Sandip K Chakrabarti

ABSTRACT Spectral and timing properties of the stellar-mass black hole candidate XTE J1752-223 during its 2009-10 outburst are studied using RXTE PCA data in the 2.5–25 keV energy range. Low frequency quasi-periodic oscillations are seen during outburst. The spectral analysis is done using two types of models: one is the combined disc blackbody plus power-law model and the other is Transonic flow solution based Two Component Advective Flow (TCAF) model. Light-curve profiles and evolution of hardness ratios are studied using MAXI GSC and Swift BAT data. Based on the evolution of the temporal and the spectral properties, we find that the object evolved through the following spectral states: hard, hard-intermediate, and soft-intermediate/soft. From the TCAF model fitted spectral analysis, we also estimate the probable mass of the black hole in the range of 8.1−11.9 M⊙, and more precisely, the mass appears to be 10 ± 1.9 M⊙.

2005 ◽  
Vol 57 (4) ◽  
pp. 629-641 ◽  
Author(s):  
Yukiko Abe ◽  
Yasushi Fukazawa ◽  
Aya Kubota ◽  
Daisuke Kasama ◽  
Kazuo Makishima

2020 ◽  
Vol 493 (2) ◽  
pp. 2178-2187
Author(s):  
Yanting Dong ◽  
Javier A García ◽  
Zhu Liu ◽  
Xueshan Zhao ◽  
Xueying Zheng ◽  
...  

ABSTRACT We present a detailed spectral analysis of the black hole candidate MAXI J1836−194. The source was caught in the intermediate state during its 2011 outburst by Suzaku and RXTE. We jointly fit the X-ray data from these two missions using the relxill model to study the reflection component, and a steep inner emissivity profile indicating a compact corona as the primary source is required in order to achieve a good fit. In addition, a reflection model with a lamp-post configuration (relxilllp), which is normally invoked to explain the steep emissivity profile, gives a worse fit and is excluded at 99 per cent confidence level compared to relxill. We also explore the effect of the ionization gradient on the emissivity profile by fitting the data with two relativistic reflection components, and it is found that the inner emissivity flattens. These results may indicate that the ionization state of the disc is not constant. All the models above require a supersolar iron abundance higher than ∼4.5. However, we find that the high-density version of reflionx can describe the same spectra even with solar iron abundance well. A moderate rotating black hole (a* = 0.84–0.94) is consistently obtained by our models, which is in agreement with previously reported values.


2018 ◽  
Vol 14 (S342) ◽  
pp. 5-8
Author(s):  
Luca Ciotti ◽  
Silvia Pellegrini

AbstractThe fully analytical solution for isothermal Bondi accretion on a black hole (MBH) at the center of JJ two-component Jaffe (1983) galaxy models is presented. In JJ models the stellar and total mass density distributions are described by the Jaffe profile, with different scale-lengths and masses, and to which a central MBH is added; all the relevant stellar dynamical properties can also be derived analytically. In these new accretion solutions the hydrodynamical and stellar dynamical properties are linked by imposing that the gas temperature is proportional to the virial temperature of the stellar component. The formulae that are provided allow to evaluate all flow properties, and are then useful for estimates of the accretion radius and the mass flow rate when modeling accretion on MBHs at the center of galaxies.


2010 ◽  
Vol 6 (S275) ◽  
pp. 327-328
Author(s):  
Tao Chen

AbstractIn this paper we investigate the quasi periodic oscillation (QPO) behavior of the black hole candidate GX 339-4 during its 2010 outburst using RXTE/PCA data. We perform spectral and timing analysis of the observations, where the QPOs are observed. We analyze the relationship between the centroid frequency of QPO and the spectral parameters. The correlation of spectral and timing properties can be used to estimate the mass of black hole with the scaling method. Using this method we estimate a mass of 7.5 ± 0.8 M⊙ of GX 339-4.


Author(s):  
Arghajit Jana ◽  
Gaurava K Jaisawal ◽  
Sachindra Naik ◽  
Neeraj Kumari ◽  
Birendra Chhotaray ◽  
...  

Abstract We present detailed timing and spectral studies of the black hole candidate MAXI J0637–430 during its 2019-2020 outburst using observations with the Neutron Star Interior Composition Explorer (NICER) and the Neil Gehrels Swift Observatory. We find that the source evolves through the soft-intermediate, high-soft, hard-intermediate and low-hard states during the outburst. No evidence of quasi-periodic oscillations is found in the power density spectra of the source. Weak variability with fractional rms amplitude $<5{{\ \rm per\ cent}}$ is found in the softer spectral states. In the hard-intermediate and hard states, high variability with the fractional rms amplitude of $>20{{\ \rm per\ cent}}$ is observed. The 0.7 − 10 keV spectra with NICER are studied with a combined disk-blackbody and nthcomp model along with the interstellar absorption. The temperature of the disc is estimated to be 0.6 keV in the rising phase and decreased slowly to 0.1 keV in the declining phase. The disc component was not detectable or absent during the low hard state. From the state-transition luminosity and the inner edge of the accretion flow, we estimate the mass of the black hole to be in the range of 5–12 M⊙, assuming the source distance of d < 10 kpc.


Sign in / Sign up

Export Citation Format

Share Document