scholarly journals Fundamental differences in the radio properties of red and blue quasars: enhanced compact AGN emission in red quasars

2020 ◽  
Vol 494 (4) ◽  
pp. 4802-4818 ◽  
Author(s):  
V A Fawcett ◽  
D M Alexander ◽  
D J Rosario ◽  
L Klindt ◽  
S Fotopoulou ◽  
...  

ABSTRACT We have recently used the Faint Images of the Radio Sky at Twenty-centimeters (FIRST) survey to show that red quasars have fundamentally different radio properties to typical blue quasars: a significant (factor ≈3) enhancement in the radio-detection fraction, which arises from systems around the radio-quiet threshold with compact (<5 arcsec) radio morphologies. To gain greater insight into these physical differences, here we use the DR14 Sloan Digital Sky Survey (SDSS) and more sensitive, higher resolution radio data from the Very Large Array (VLA) Stripe 82 (S82) and VLA-COSMOS 3 GHz (C3GHz) surveys. With the S82 data, we perform morphological analyses at a resolution and depth three times that of the FIRST radio survey, and confirm an enhancement in radio-faint and compact red quasars over typical quasars; we now also find tentative evidence for an enhancement in red quasars with slightly extended radio structures (16–43 kpc at z = 1.5). These analyses are complemented by C3GHz, which is deep enough to detect radio emission from star-formation processes. From our data we find that the radio enhancement from red quasars is due to AGN activity on compact scales (≲43 kpc) for radio-intermediate–radio-quiet sources (−5 < $\mathcal {R}$ < −3.4, where $\mathcal {R}$ = $L_{\rm{1.4\,GHz}}/L_{6\mu\text{m}}$), which decreases at $\mathcal {R}$ < −5 as the radio emission from star-formation starts to dilute the AGN component. Overall our results argue against a simple orientation scenario and are consistent with red quasars representing a younger, earlier phase in the overall evolution of quasars.

2020 ◽  
Vol 494 (3) ◽  
pp. 3061-3079 ◽  
Author(s):  
D J Rosario ◽  
V A Fawcett ◽  
L Klindt ◽  
D M Alexander ◽  
L K Morabito ◽  
...  

ABSTRACT Red quasi-stellar objects (QSOs) are a subset of the luminous end of the cosmic population of active galactic nuclei (AGNs), most of which are reddened by intervening dust along the line of sight towards their central engines. In recent work from our team, we developed a systematic technique to select red QSOs from the Sloan Digital Sky Survey, and demonstrated that they have distinctive radio properties using the Faint Images of the Radio Sky at Twenty centimetres radio survey. Here we expand our study using low-frequency radio data from the LOFAR Two-metre Sky Survey (LoTSS). With the improvement in depth that LoTSS offers, we confirm key results: Compared to a control sample of normal ‘blue’ QSOs matched in redshift and accretion power, red QSOs have a higher radio detection rate and a higher incidence of compact radio morphologies. For the first time, we also demonstrate that these differences arise primarily in sources of intermediate radio loudness: Radio-intermediate red QSOs are × 3 more common than typical QSOs, but the excess diminishes among the most radio-loud systems and the most radio-quiet systems in our study. We develop Monte Carlo simulations to explore whether differences in star formation could explain these results, and conclude that, while star formation is an important source of low-frequency emission among radio-quiet QSOs, a population of AGN-driven compact radio sources is the most likely cause for the distinct low-frequency radio properties of red QSOs. Our study substantiates the conclusion that fundamental differences must exist between the red and normal blue QSO populations.


2020 ◽  
Vol 499 (1) ◽  
pp. 334-354
Author(s):  
Biny Sebastian ◽  
P Kharb ◽  
C P O’Dea ◽  
J F Gallimore ◽  
S A Baum

ABSTRACT To understand the origin of radio emission in radio-quiet active galactic nucleus (AGN) and differentiate between the contributions from star formation, AGN accretion, and jets, we have observed a nearby sample of Seyfert galaxies along with a comparison sample of starburst galaxies using the Expanded Very Large Array (EVLA) in full-polarization mode in the B-array configuration. The radio morphologies of the Seyfert galaxies show lobe/bubble-like features or prominent cores in radio emission, whereas the starburst galaxies show radio emission spatially coincident with the star-forming regions seen in optical images. There is tentative evidence that Seyferts tend to show more polarized structures than starburst galaxies at the resolution of our observations. We find that unlike a sample of Seyfert galaxies hosting kilo-parsec scale radio (KSR) emission, starburst galaxies with superwinds do not show radio-excess compared to the radio–FIR correlation. This suggests that shock acceleration is not adequate to explain the excess radio emission seen in Seyferts and hence most likely have a jet-related origin. We also find that the [O iii] luminosity of the Seyferts is correlated with the off-nuclear radio emission from the lobes, whereas it is not well correlated with the total emission which also includes the core. This suggests strong jet–medium interaction, which in turn limits the jet/lobe extents in Seyferts. We find that the power contribution of AGN jet, AGN accretion, and star formation is more or less comparable in our sample of Seyfert galaxies. We also find indications of episodic AGN activity in many of our Seyfert galaxies.


2021 ◽  
Vol 502 (3) ◽  
pp. 4154-4169
Author(s):  
Amy L Rankine ◽  
James H Matthews ◽  
Paul C Hewett ◽  
Manda Banerji ◽  
Leah K Morabito ◽  
...  

ABSTRACT We present an investigation of the low-frequency radio and ultraviolet properties of a sample of ≃10 500 quasars from the Sloan Digital Sky Survey Data Release 14, observed as part of the first data release of the Low-Frequency-Array Two-metre Sky Survey. The quasars have redshifts 1.5 < z < 3.5 and luminosities $44.6 \lt \log _{10}\left(L_{\text{bol}}/\rm{erg\,s}^{-1}\right) \lt 47.2$. We employ ultraviolet spectral reconstructions based on an independent component analysis to parametrize the C iv λ1549-emission line that is used to infer the strength of accretion disc winds, and the He ii λ1640 line, an indicator of the soft X-ray flux. We find that radio-detected quasars are found in the same region of C iv blueshift versus equivalent-width space as radio-undetected quasars, but that the loudest, most luminous and largest radio sources exist preferentially at low C iv blueshifts. Additionally, the radio-detection fraction increases with blueshift whereas the radio-loud fraction decreases. In the radio-quiet population, we observe a range of He ii equivalent widths as well as a Baldwin effect with bolometric luminosity, whilst the radio-loud population has mostly strong He ii, consistent with a stronger soft X-ray flux. The presence of strong He ii is a necessary but not sufficient condition to detect radio-loud emission suggesting some degree of stochasticity in jet formation. Using energetic arguments and Monte Carlo simulations, we explore the plausibility of winds, compact jets, and star formation as sources of the radio quiet emission, ruling out none. The existence of quasars with similar ultraviolet properties but differing radio properties suggests, perhaps, that the radio and ultraviolet emission is tracing activity occurring on different time-scales.


2019 ◽  
Vol 630 ◽  
pp. A110 ◽  
Author(s):  
V. Ganci ◽  
P. Marziani ◽  
M. D’Onofrio ◽  
A. del Olmo ◽  
E. Bon ◽  
...  

Context. When can an active galactic nucleus (AGN) be considered radio loud (RL)? Following the established view of the AGNs inner workings, an AGN is RL if associated with relativistic ejections emitting a radio synchrotron spectrum (i.e., it is a “jetted” AGN). In this paper we exploit the AGN main sequence that offers a powerful tool to contextualize radio properties. Aims. If large samples of optically-selected quasars are considered, AGNs are identified as RL if their Kellermann’s radio loudness ratio RK >  10. Our aims are to characterize the optical properties of different classes based on radio loudness within the main sequence and to test whether the condition RK >  10 is sufficient for the identification of RL AGNs, since the origin of relatively strong radio emission may not be necessarily due to relativistic ejection. Methods. A sample of 355 quasars was selected by cross-correlating the Very Large Array Faint Images of the Radio Sky at Twenty-Centimeters survey (FIRST) with the twelfth release of the Sloan Digital Sky Survey Quasar Catalog published in 2017. We classified the optical spectra according to their spectral types along the main sequence of quasars. For each spectral type, we distinguished compact and extended morphology (providing a FIRST-based atlas of radio maps in the latter case), and three classes of radio loudness: detected ( specific flux ratio in the g band and at 1.4 GHz, R′K < 10), intermediate (10 ≤ R′K < 70), and RL (R′K ≥ 70). Results. The analysis revealed systematic differences between radio-detected (i.e., radio-quiet), radio-intermediate, and RL classes in each spectral type along the main sequence. We show that spectral bins that contain the extreme Population A sources have radio power compatible with emission by mechanisms ultimately due to star formation processes. RL sources of Population B are characteristically jetted. Their broad Hβ profiles can be interpreted as due to a binary broad-line region. We suggest that RL Population B sources should be preferential targets for the search of black hole binaries, and present a sample of binary black hole AGN candidates. Conclusions. The validity of the Kellermann’s criterion may be dependent on the source location along the quasar main sequence. The consideration of the main sequence trends allowed us to distinguish between sources whose radio emission mechanisms is jetted from the ones where the mechanism is likely to be fundamentally different.


2021 ◽  
Vol 162 (6) ◽  
pp. 270
Author(s):  
Gordon T. Richards ◽  
Trevor V. McCaffrey ◽  
Amy Kimball ◽  
Amy L. Rankine ◽  
James H. Matthews ◽  
...  

Abstract We discuss a probe of the contribution of wind-related shocks to the radio emission in otherwise radio-quiet quasars. Given (1) the nonlinear correlation between UV and X-ray luminosity in quasars, (2) that such a correlation leads to higher likelihood of radiation-line-driven winds in more luminous quasars, and (3) that luminous quasars are more abundant at high redshift, deep radio observations of high-redshift quasars are needed to probe potential contributions from accretion disk winds. We target a sample of 50 z ≃ 1.65 color-selected quasars that span the range of expected accretion disk wind properties as traced by broad C iv emission. 3 GHz observations with the Very Large Array to an rms of ≈10 μJy beam−1 probe to star formation rates of ∼400 M ⊙ yr−1, leading to 22 detections. Supplementing these pointed observations are survey data of 388 sources from the LOFAR Two-meter Sky Survey Data Release 1 that reach comparable depth (for a typical radio spectral index), where 123 sources are detected. These combined observations reveal a radio detection fraction that is a nonlinear function of C iv emission-line properties and suggest that the data may require multiple origins of radio emission in radio-quiet quasars. We find evidence for radio emission from weak jets or coronae in radio-quiet quasars with low Eddington ratios, with either (or both) star formation and accretion disk winds playing an important role in optically luminous quasars and correlated with increasing Eddington ratio. Additional pointed radio observations are needed to fully establish the nature of radio emission in radio-quiet quasars.


2019 ◽  
Vol 622 ◽  
pp. A15 ◽  
Author(s):  
L. K. Morabito ◽  
J. H. Matthews ◽  
P. N. Best ◽  
G. Gürkan ◽  
M. J. Jarvis ◽  
...  

We present a study of the low-frequency radio properties of broad absorption line quasars (BALQSOs) from the LOFAR Two-metre Sky-Survey Data Release 1 (LDR1). The value-added LDR1 catalogue contains Pan-STARRS counterparts, which we match with the Sloan Digital Sky Survey (SDSS) DR7 and DR12 quasar catalogues. We find that BALQSOs are twice as likely to be detected at 144 MHz than their non-BAL counterparts, and BALQSOs with low-ionisation species present in their spectra are three times more likely to be detected than those with only high-ionisation species. The BALQSO fraction at 144 MHz is constant with increasing radio luminosity, which is inconsistent with previous results at 1.4 GHz, indicating that observations at the different frequencies may be tracing different sources of radio emission. We cross-match radio sources between the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) survey and LDR1, which provides a bridge via the LDR1 Pan-STARRS counterparts to identify BALQSOs in SDSS. Consequently we expand the sample of BALQSOs detected in FIRST by a factor of three. The LDR1-detected BALQSOs in our sample are almost exclusively radio-quiet (log(R144 MHz) < 2), with radio sizes at 144 MHz typically less than 200 kpc; these radio sizes tend to be larger than those at 1.4 GHz, suggesting more extended radio emission at low frequencies. We find that although the radio detection fraction increases with increasing balnicity index (BI), there is no correlation between BI and either low-frequency radio power or radio-loudness. This suggests that both radio emission and BI may be linked to the same underlying process, but are spatially distinct phenomena.


2013 ◽  
Vol 22 (2) ◽  
Author(s):  
Xin-Fa Deng ◽  
Fuyang Zhang

AbstractFrom the apparent magnitude-limited the Main galaxy sample of the Sloan Digital Sky Survey Data Release 7, we construct a paired galaxy sample and a control sample without close companions with the projected separations


2019 ◽  
Vol 629 ◽  
pp. A7
Author(s):  
Mikkel O. Lindholmer ◽  
Kevin A. Pimbblet

In this work we use the property that, on average, star formation rate increases with redshift for objects with the same mass – the so called galaxy main sequence – to measure the redshift of galaxy clusters. We use the fact that the general galaxy population forms both a quenched and a star-forming sequence, and we locate these ridges in the SFR–M⋆ plane with galaxies taken from the Sloan Digital Sky Survey in discrete redshift bins. We fitted the evolution of the galaxy main sequence with redshift using a new method and then subsequently apply our method to a suite of X-ray selected galaxy clusters in an attempt to create a new distance measurement to clusters based on their galaxy main sequence. We demonstrate that although it is possible in several galaxy clusters to measure the main sequences, the derived distance and redshift from our galaxy main sequence fitting technique has an accuracy of σz = ±0.017 ⋅ (z + 1) and is only accurate up to z ≈ 0.2.


Sign in / Sign up

Export Citation Format

Share Document