scholarly journals Modeling the UV/optical continuum time-lags in AGN

Author(s):  
E S Kammoun ◽  
I E Papadakis ◽  
M Dovčiak

Abstract Thermal reverberation in accretion discs of active galactic nuclei is thought to be the reason of the continuum UV/optical time lags seen in these sources. Recently, we studied thermal reverberation of a standard Novikov-Thorne accretion disc illuminated by an X–ray point-like source, and we derived an analytic prescription for the time lags as function of wavelength. In this work, we use this analytic function to fit the time-lags spectra of seven Seyferts, that have been intensively monitored, in many wave-bands, in the last few years. We find that thermal reverberation can explain the observed UV/optical time lags in all these sources. Contrary to previous claims, the magnitude of the observed UV/optical time-lags is exactly as expected in the case of a standard accretion disc in the lamp-post geometry, given the black hole mass and the accretion rate estimates for the objects we study. We derive estimates of the disc accretion rates and corona height for a non-spinning and a maximally spinning black hole scenarios. We also find that the modelling of the continuum optical/UV time-lags can be used to estimate the black hole spin, when combined with additional information. We also find that the model under-predicts the observed X–ray to UV time-lags, but this difference is probably due to the broad X-ray auto-correlation function of these sources.

Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 55
Author(s):  
Jose M. Ramírez-Velásquez ◽  
Leonardo Di G. Sigalotti ◽  
Ruslan Gabbasov ◽  
Jaime Klapp ◽  
Ernesto Contreras

We investigate the non-isothermal Bondi accretion onto a supermassive black hole (SMBH) for the unexplored case when the adiabatic index is varied in the interval 1<γ≤1.66 and for the Paczyński–Wiita γ=5/3 regime, including the effects of X-ray heating and radiation force due to electron scattering and spectral lines. The X-ray/central object radiation is assumed to be isotropic, while the UV emission from the accretion disc is assumed to have an angular dependence. This allows us to build streamlines in any desired angular direction. The effects of both types of radiation on the accretion dynamics is evaluated with and without the effects of spectral line driving. Under line driving (and for the studied angles), when the UV flux dominates over the X-ray heating, with a fraction of UV photons going from 80% to 95%, and γ varies from 1.66 to 1.1, the inflow close to the gravitational source becomes more supersonic and the volume occupied by the supersonic inflow becomes larger. This property is also seen when this fraction goes from 50% to 80%. The underestimation of the Bondi radius close to the centre increases with increasing γ, while the central overestimation of the accretion rates decreases with increasing γ, for all the six studied cases.


2021 ◽  
Vol 502 (1) ◽  
pp. L72-L78
Author(s):  
K Mohamed ◽  
E Sonbas ◽  
K S Dhuga ◽  
E Göğüş ◽  
A Tuncer ◽  
...  

ABSTRACT Similar to black hole X-ray binary transients, hysteresis-like state transitions are also seen in some neutron-star X-ray binaries. Using a method based on wavelets and light curves constructed from archival Rossi X-ray Timing Explorer observations, we extract a minimal timescale over the complete range of transitions for 4U 1608-52 during the 2002 and 2007 outbursts and the 1999 and 2000 outbursts for Aql X-1. We present evidence for a strong positive correlation between this minimal timescale and a similar timescale extracted from the corresponding power spectra of these sources.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


2014 ◽  
Vol 10 (S312) ◽  
pp. 139-140
Author(s):  
Fu-Guo Xie

AbstractSignificant progresses have been made since the discovery of hot accretion flow, a theory successfully applied to the low-luminosity active galactic nuclei (LLAGNs) and black hole (BH) X-ray binaries (BHBs) in their hard states. Motivated by these updates, we re-investigate the radiative efficiency of hot accretion flow. We find that, the brightest regime of hot accretion flow shows a distinctive property, i.e. it has a constant efficiency independent of accretion rates, similar to the standard thin disk. For less bright regime, the efficiency has a steep positive correlation with the accretion rate, while for faint regime typical of advection-dominated accretion flow, the correlation is shadower. This result can naturally explain the observed two distinctive correlations between radio and X-ray luminosities in black hole X-ray binaries. The key difference in systems with distinctive correlations could be the viscous parameter, which determines the critical luminosity of different accretion modes.


2020 ◽  
Vol 497 (4) ◽  
pp. 4213-4221
Author(s):  
Ritesh Ghosh ◽  
Sibasish Laha

ABSTRACT We have extensively studied the broad--band X-ray spectra of the source ESO 141–G055 using all available XMM–Newton and NuSTAR observations. We detect a prominent soft excess below $2\rm \, \, {\rm keV}$, a narrow Fe line, and a Compton hump ($\gt 10\rm \, \, {\rm keV}$). The origin of the soft excess is still debated. We used two models to describe the soft excess: the blurred reflection from the ionized accretion disc and the intrinsic thermal Comptonization model. We find that both of these models explain the soft excess equally well. We confirm that we do not detect any broad Fe line in the X-ray spectra of this source, although both the physical models prefer a maximally spinning black hole scenario (a &gt; 0.96). This may mean that either the broad Fe line is absent or blurred beyond detection. The Eddington rate of the source is estimated to be $\lambda _{\rm \, Edd}\sim 0.31$. In the reflection model, the Compton hump has a contribution from both ionized and neutral reflection components. The neutral reflector which simultaneously describes the narrow Fe K α and the Compton hump has a column density of $N_{\rm H} \ge 7\times 10^{24} \, \rm cm^{-2}$. In addition, we detect a partially covering ionized absorption with ionization parameter $\log \xi /\rm \, erg\, cm\, s^{-1}$  = $0.1^{+0.1}_{-0.1}$ and column density $N_{\rm H} =20.6^{+1.0}_{-1.0}\times 10^{22} \, \rm cm^{-2}$ with a covering factor of $0.21^{+0.01}_{-0.01}$.


2019 ◽  
Vol 487 (4) ◽  
pp. 4965-4984 ◽  
Author(s):  
J J Zanazzi ◽  
Dong Lai

ABSTRACT After the tidal disruption event (TDE) of a star around a supermassive black hole (SMBH), the bound stellar debris rapidly forms an accretion disc. If the accretion disc is not aligned with the spinning SMBH’s equatorial plane, the disc will be driven into Lense–Thirring precession around the SMBH’s spin axis, possibly affecting the TDE’s light curve. We carry out an eigenmode analysis of such a disc to understand how the disc’s warp structure, precession, and inclination evolution are influenced by the disc’s and SMBH’s properties. We find an oscillatory warp may develop as a result of strong non-Keplarian motion near the SMBH. The global disc precession frequency matches the Lense–Thirring precession frequency of a rigid disc around a spinning black hole within a factor of a few when the disc’s accretion rate is high, but deviates significantly at low accretion rates. Viscosity aligns the disc with the SMBH’s equatorial plane over time-scales of days to years, depending on the disc’s accretion rate, viscosity, and SMBH’s mass. We also examine the effect of fallback material on the warp evolution of TDE discs, and find that the fallback torque aligns the TDE disc with the SMBH’s equatorial plane in a few to tens of days for the parameter space investigated. Our results place constraints on models of TDE emission which rely on the changing disc orientation with respect to the line of sight to explain observations.


2020 ◽  
Vol 494 (3) ◽  
pp. 4057-4068
Author(s):  
Mayukh Pahari ◽  
I M McHardy ◽  
Federico Vincentelli ◽  
Edward Cackett ◽  
Bradley M Peterson ◽  
...  

ABSTRACT Using a month-long X-ray light curve from RXTE/PCA and 1.5 month-long UV continuum light curves from IUE spectra in 1220–1970 Å, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysis confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 Å by 3.49 ± 0.22 d, which is possibly caused by either propagating fluctuation or variable Comptonization. However, if variations slower than 5 d are removed from the X-ray light curve, the UV variations then lag behind the X-ray variations by 0.37 ± 0.14 d, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between Swift/XRT X-ray and Swift/UVOT UVW2, U light curves. Continuum light curves extracted from the Swift/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 d, the slow variations at 1825 Å lag those at 1315 Å by 0.29 ± 0.06 d, while the fast variations are coincident (0.04 ± 0.12 d). The UV/optical continuum reverberation lag from IUE, Swift, and other optical telescopes at different wavelengths are consistent with the relationship: τ ∝ λ4/3, predicted for the standard accretion disc theory while the best-fitting X-ray delay from RXTE and Swift/XRT shows a negative X-ray offset of ∼0.38 d from the standard disc delay prediction.


2019 ◽  
Vol 487 (3) ◽  
pp. 3488-3504
Author(s):  
Srimanta Banerjee ◽  
Chandrachur Chakraborty ◽  
Sudip Bhattacharyya

Sign in / Sign up

Export Citation Format

Share Document