scholarly journals The Radiative Newtonian 1 < γ ≤ 1.66 and the Paczyński–Wiita γ = 5/3 Regime of Non-Isothermal Bondi Accretion onto a Massive Black Hole with an Accretion Disc

Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 55
Author(s):  
Jose M. Ramírez-Velásquez ◽  
Leonardo Di G. Sigalotti ◽  
Ruslan Gabbasov ◽  
Jaime Klapp ◽  
Ernesto Contreras

We investigate the non-isothermal Bondi accretion onto a supermassive black hole (SMBH) for the unexplored case when the adiabatic index is varied in the interval 1<γ≤1.66 and for the Paczyński–Wiita γ=5/3 regime, including the effects of X-ray heating and radiation force due to electron scattering and spectral lines. The X-ray/central object radiation is assumed to be isotropic, while the UV emission from the accretion disc is assumed to have an angular dependence. This allows us to build streamlines in any desired angular direction. The effects of both types of radiation on the accretion dynamics is evaluated with and without the effects of spectral line driving. Under line driving (and for the studied angles), when the UV flux dominates over the X-ray heating, with a fraction of UV photons going from 80% to 95%, and γ varies from 1.66 to 1.1, the inflow close to the gravitational source becomes more supersonic and the volume occupied by the supersonic inflow becomes larger. This property is also seen when this fraction goes from 50% to 80%. The underestimation of the Bondi radius close to the centre increases with increasing γ, while the central overestimation of the accretion rates decreases with increasing γ, for all the six studied cases.

2019 ◽  
Vol 631 ◽  
pp. A13
Author(s):  
J. M. Ramírez-Velásquez ◽  
L. Di G. Sigalotti ◽  
R. Gabbasov ◽  
J. Klapp ◽  
E. Contreras

We present the classical Bondi accretion theory for the case of non-isothermal accretion processes onto a supermassive black hole (SMBH), including the effects of X-ray heating and the radiation force due to electron scattering and spectral lines. The radiation field is calculated by considering an optically thick, geometrically thin, standard accretion disc as the emitter of UV photons and a spherical central object as a source of X-ray emission. In our analysis, the UV emission from the accretion disc is assumed to have an angular dependence, and the X-ray radiation from the central object is assumed to be isotropic. This allows us to build streamlines in any angular direction. The influence of both types of radiation is evaluated for different flux fractions of the X-ray and UV emissions with and without the effects of spectral line driving. We find that the radiation emitted near the SMBH interacts with the infalling matter and modifies the accretion dynamics. In the presence of line driving, a transition takes place from pure type 1 and 2 to type 5 solutions, which takes place regardless of whether the UV emission dominates the X-ray emission. We computed the radiative factors at which this transition occurs, and discard type 5 solution from all our models. We also provide estimated values of the accretion radius and accretion rate in terms of the classical Bondi values. The results are useful for constructing proper initial conditions for time-dependent hydrodynamical simulations of accretion flows onto SMBHs at the centre of galaxies.


Author(s):  
E S Kammoun ◽  
I E Papadakis ◽  
M Dovčiak

Abstract Thermal reverberation in accretion discs of active galactic nuclei is thought to be the reason of the continuum UV/optical time lags seen in these sources. Recently, we studied thermal reverberation of a standard Novikov-Thorne accretion disc illuminated by an X–ray point-like source, and we derived an analytic prescription for the time lags as function of wavelength. In this work, we use this analytic function to fit the time-lags spectra of seven Seyferts, that have been intensively monitored, in many wave-bands, in the last few years. We find that thermal reverberation can explain the observed UV/optical time lags in all these sources. Contrary to previous claims, the magnitude of the observed UV/optical time-lags is exactly as expected in the case of a standard accretion disc in the lamp-post geometry, given the black hole mass and the accretion rate estimates for the objects we study. We derive estimates of the disc accretion rates and corona height for a non-spinning and a maximally spinning black hole scenarios. We also find that the modelling of the continuum optical/UV time-lags can be used to estimate the black hole spin, when combined with additional information. We also find that the model under-predicts the observed X–ray to UV time-lags, but this difference is probably due to the broad X-ray auto-correlation function of these sources.


2018 ◽  
Vol 33 (34) ◽  
pp. 1845016
Author(s):  
Milan Milošević ◽  
Miika A. Pursiainen ◽  
Predrag Jovanović ◽  
Luka Č. Popović

The relativistically broadened Fe K[Formula: see text] line, originating from the accretion disc in a vicinity of a super massive black hole, is observed in only less than 50% of type 1 Active Galactic Nuclei (AGN). In this study, we investigate could this lack of detections be explained by the effects of certain parameters of the accretion disc and black hole, such as the inclination, the inner and outer radius of disc and emissivity index. In order to determine how these parameters affect the Fe K[Formula: see text] line shape, we simulated about 60,000 Fe K[Formula: see text] line profiles emitted from the relativistic disc. Based on simulated line profiles, we conclude that the lack of the Fe K[Formula: see text] line detection in type 1 AGN could be caused by the specific emitting disc parameters, but also by the limits in the spectral resolution and sensitivity of the X-ray detectors.


2014 ◽  
Vol 10 (S312) ◽  
pp. 139-140
Author(s):  
Fu-Guo Xie

AbstractSignificant progresses have been made since the discovery of hot accretion flow, a theory successfully applied to the low-luminosity active galactic nuclei (LLAGNs) and black hole (BH) X-ray binaries (BHBs) in their hard states. Motivated by these updates, we re-investigate the radiative efficiency of hot accretion flow. We find that, the brightest regime of hot accretion flow shows a distinctive property, i.e. it has a constant efficiency independent of accretion rates, similar to the standard thin disk. For less bright regime, the efficiency has a steep positive correlation with the accretion rate, while for faint regime typical of advection-dominated accretion flow, the correlation is shadower. This result can naturally explain the observed two distinctive correlations between radio and X-ray luminosities in black hole X-ray binaries. The key difference in systems with distinctive correlations could be the viscous parameter, which determines the critical luminosity of different accretion modes.


2020 ◽  
Vol 497 (4) ◽  
pp. 4213-4221
Author(s):  
Ritesh Ghosh ◽  
Sibasish Laha

ABSTRACT We have extensively studied the broad--band X-ray spectra of the source ESO 141–G055 using all available XMM–Newton and NuSTAR observations. We detect a prominent soft excess below $2\rm \, \, {\rm keV}$, a narrow Fe line, and a Compton hump ($\gt 10\rm \, \, {\rm keV}$). The origin of the soft excess is still debated. We used two models to describe the soft excess: the blurred reflection from the ionized accretion disc and the intrinsic thermal Comptonization model. We find that both of these models explain the soft excess equally well. We confirm that we do not detect any broad Fe line in the X-ray spectra of this source, although both the physical models prefer a maximally spinning black hole scenario (a &gt; 0.96). This may mean that either the broad Fe line is absent or blurred beyond detection. The Eddington rate of the source is estimated to be $\lambda _{\rm \, Edd}\sim 0.31$. In the reflection model, the Compton hump has a contribution from both ionized and neutral reflection components. The neutral reflector which simultaneously describes the narrow Fe K α and the Compton hump has a column density of $N_{\rm H} \ge 7\times 10^{24} \, \rm cm^{-2}$. In addition, we detect a partially covering ionized absorption with ionization parameter $\log \xi /\rm \, erg\, cm\, s^{-1}$  = $0.1^{+0.1}_{-0.1}$ and column density $N_{\rm H} =20.6^{+1.0}_{-1.0}\times 10^{22} \, \rm cm^{-2}$ with a covering factor of $0.21^{+0.01}_{-0.01}$.


1998 ◽  
Vol 188 ◽  
pp. 291-292
Author(s):  
T. Toneri ◽  
K. Hayashida ◽  
M. Loewenstein

M32 is the nearest dwarf elliptical galaxy. Its center is known to have a mass concentration of 3 × 106 M⊙, which is usually interpreted as an evidence of a super massive black hole. We observed M32 with ASCA two times in July and August of 1996. An X-ray source was detected at the center of M32 and its first broad-band X-ray spectra were obtained. ASCA observations of M32 limit the activity of the central black hole to be less than 10−6 times of the Eddington limit. We also found two other bright sources within 12 arcmin from the M32 center. One is the newly appeared X-ray source and the other is G144. In this paper, we summarize the results on the new source and G144. For M32, please refer to the publication (Loewenstein et al. 1997).


2019 ◽  
Vol 487 (4) ◽  
pp. 4965-4984 ◽  
Author(s):  
J J Zanazzi ◽  
Dong Lai

ABSTRACT After the tidal disruption event (TDE) of a star around a supermassive black hole (SMBH), the bound stellar debris rapidly forms an accretion disc. If the accretion disc is not aligned with the spinning SMBH’s equatorial plane, the disc will be driven into Lense–Thirring precession around the SMBH’s spin axis, possibly affecting the TDE’s light curve. We carry out an eigenmode analysis of such a disc to understand how the disc’s warp structure, precession, and inclination evolution are influenced by the disc’s and SMBH’s properties. We find an oscillatory warp may develop as a result of strong non-Keplarian motion near the SMBH. The global disc precession frequency matches the Lense–Thirring precession frequency of a rigid disc around a spinning black hole within a factor of a few when the disc’s accretion rate is high, but deviates significantly at low accretion rates. Viscosity aligns the disc with the SMBH’s equatorial plane over time-scales of days to years, depending on the disc’s accretion rate, viscosity, and SMBH’s mass. We also examine the effect of fallback material on the warp evolution of TDE discs, and find that the fallback torque aligns the TDE disc with the SMBH’s equatorial plane in a few to tens of days for the parameter space investigated. Our results place constraints on models of TDE emission which rely on the changing disc orientation with respect to the line of sight to explain observations.


2019 ◽  
Vol 487 (3) ◽  
pp. 3488-3504
Author(s):  
Srimanta Banerjee ◽  
Chandrachur Chakraborty ◽  
Sudip Bhattacharyya

Sign in / Sign up

Export Citation Format

Share Document