scholarly journals On the alignment of PNe and local magnetic field at the Galactic centre: magnetohydrodynamical numerical simulations

2014 ◽  
Vol 438 (4) ◽  
pp. 2853-2863 ◽  
Author(s):  
D. Falceta-Gonçalves ◽  
H. Monteiro
2013 ◽  
Vol 9 (S302) ◽  
pp. 126-129
Author(s):  
Khalil Daiffallah

AbstractMotivated by the problem of local solar subsurface magnetic structure, we have used numerical simulations to investigate the propagation of waves through monolithic magnetic flux tubes of different sizes. A cluster model can be a good approximation to simulate sunspots as well as solar plage regions which are composed of an ensemble of compactly packed thin flux tubes. Simulations of this type are powerful tools to probe the structure and the dynamics of various solar features which are directly related to solar magnetic field activity.


2019 ◽  
Vol 623 ◽  
pp. A176 ◽  
Author(s):  
L. P. Chitta ◽  
A. R. C. Sukarmadji ◽  
L. Rouppe van der Voort ◽  
H. Peter

Context. Densely packed coronal loops are rooted in photospheric plages in the vicinity of active regions on the Sun. The photospheric magnetic features underlying these plage areas are patches of mostly unidirectional magnetic field extending several arcsec on the solar surface. Aims. We aim to explore the transient nature of the magnetic field, its mixed-polarity characteristics, and the associated energetics in the active region plage using high spatial resolution observations and numerical simulations. Methods. We used photospheric Fe I 6173 Å spectropolarimetric observations of a decaying active region obtained from the Swedish 1-m Solar Telescope (SST). These data were inverted to retrieve the photospheric magnetic field underlying the plage as identified in the extreme-ultraviolet emission maps obtained from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). To obtain better insight into the evolution of extended unidirectional magnetic field patches on the Sun, we performed 3D radiation magnetohydrodynamic simulations of magnetoconvection using the MURaM code. Results. The observations show transient magnetic flux emergence and cancellation events within the extended predominantly unipolar patch on timescales of a few 100 s and on spatial scales comparable to granules. These transient events occur at the footpoints of active region plage loops. In one case the coronal response at the footpoints of these loops is clearly associated with the underlying transient. The numerical simulations also reveal similar magnetic flux emergence and cancellation events that extend to even smaller spatial and temporal scales. Individual simulated transient events transfer an energy flux in excess of 1 MW m−2 through the photosphere. Conclusions. We suggest that the magnetic transients could play an important role in the energetics of active region plage. Both in observations and simulations, the opposite-polarity magnetic field brought up by transient flux emergence cancels with the surrounding plage field. Magnetic reconnection associated with such transient events likely conduits magnetic energy to power the overlying chromosphere and coronal loops.


Soft Matter ◽  
2016 ◽  
Vol 12 (4) ◽  
pp. 1279-1294 ◽  
Author(s):  
Alena Antipova ◽  
Colin Denniston

We explain the motion of a micron-sized ferromagnetic disc immersed in a nematic liquid crystal under the action of a weak magnetic field using numerical simulations. We show that the disc's behaviour can be controlled by the angular speed of the magnetic field and its magnitude.


2015 ◽  
Vol 10 (10) ◽  
pp. P10008-P10008 ◽  
Author(s):  
R.C. Wolf ◽  
A. Bock ◽  
O.P. Ford ◽  
R. Reimer ◽  
A. Burckhart ◽  
...  

2015 ◽  
Vol 4 (1) ◽  
pp. 1-18 ◽  
Author(s):  
M. Díaz-Michelena ◽  
R. Sanz ◽  
M. F. Cerdán ◽  
A. B. Fernández

Abstract. MOURA instrument is a three-axis magnetometer and gradiometer designed and developed for Mars MetNet Precursor mission. The initial scientific goal of the instrument is to measure the local magnetic field in the surroundings of the lander i.e. to characterize the magnetic environment generated by the remanent magnetization of the crust and the superimposed daily variations of the field produced either by the solar wind incidence or by the thermomagnetic variations. Therefore, the qualification model (QM) will be tested in representative scenarios like magnetic surveys on terrestrial analogues of Mars and monitoring solar events, with the aim to achieve some experience prior to the arrival to Mars. In this work, we present a practical first approach for calibration of the instrument in the laboratory; a finer correction after the comparison of MOURA data with those of a reference magnetometer located in San Pablo de los Montes (SPT) INTERMAGNET Observatory; and a comparative recording of a geomagnetic storm as a demonstration of the compliance of the instrument capabilities with the scientific objectives.


2013 ◽  
Vol 72 (4) ◽  
pp. 1176-1181 ◽  
Author(s):  
Eric R. Muir ◽  
Damon Cardenas ◽  
Shiliang Huang ◽  
John Roby ◽  
Guang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document