scholarly journals A signature of chromospheric activity in brown dwarfs revealed by 2.5–5.0 μm AKARI spectra

2014 ◽  
Vol 440 (4) ◽  
pp. 3675-3684 ◽  
Author(s):  
S. Sorahana ◽  
T. K. Suzuki ◽  
I. Yamamura
2020 ◽  
Vol 645 ◽  
pp. A17
Author(s):  
P. Chinchilla ◽  
V. J. S. Béjar ◽  
N. Lodieu ◽  
M. R. Zapatero Osorio ◽  
B. Gauza

Aims. Our objective is the optical and near-infrared spectroscopic characterisation of 2MASS J0249−0557 c, a recently discovered young planetary mass companion to the β Pictoris (~25 Myr) member 2MASS J0249−0557. Methods. Using the Visible and Infrared Survey Telescope for Astronomy Hemisphere Survey and the Two Micron All Sky Survey (2MASS) data, we independently identified the companion 2MASS J0249−0557 c. We also obtained low-resolution optical spectroscopy of this object using the Optical System for Imaging and low-intermediate-Resolution Integrated Spectroscopy spectrograph at the Gran Telescopio Canarias, and near-infrared spectroscopy using the Son of Isaac spectrograph on the New Technology Telescope. Results. We classified 2MASS J0249−0557 c with a spectral type of L2.5 ± 0.5 in the optical and L3 ± 1 in the near-infrared. We identified several spectroscopic indicators of youth both in the optical and in the near-infrared that are compatible with the age of the β Pictoris moving group: strong absorption due to oxides, weak alkaline atomic lines, and a triangular shape of the H-band pseudo-continuum. We also detect a strong Hα emission, with a pseudo-equivalent width (pEW) of −90−40+20 Å, which seems persistent at timescales from several days to a few years. This indicates strong chromospheric activity or disk accretion. Although many M-type brown dwarfs have strong Hα emission, this target is one of the very few L-type planetary mass objects in which this strong Hα emission has been detected. Lithium absorption at 6708 Å is observed with pEW ≲5 Å. We also computed the binding energy of 2MASS J0249−0557 c and obtained an (absolute) upper limit of U = (−8.8 ± 4.4) × 1032 J. Conclusions. Similarly to other young brown dwarfs and isolated planetary mass objects, strong Hα emission due to accretion or chromospheric activity is also present in young planetary mass companions at ages of some dozen million years. We also found that 2MASS J0249−0557 c is one of the wide substellar companions with the lowest binding energy known to date.


1966 ◽  
Vol 24 ◽  
pp. 40-43
Author(s):  
O. C. Wilson ◽  
A. Skumanich

Evidence previously presented by one of the authors (1) suggests strongly that chromospheric activity decreases with age in main sequence stars. This tentative conclusion rests principally upon a comparison of the members of large clusters (Hyades, Praesepe, Pleiades) with non-cluster objects in the general field, including the Sun. It is at least conceivable, however, that cluster and non-cluster stars might differ in some fundamental fashion which could influence the degree of chromospheric activity, and that the observed differences in chromospheric activity would then be attributable to the circumstances of stellar origin rather than to age.


2003 ◽  
Vol 211 ◽  
pp. 455-456 ◽  
Author(s):  
José A. Caballero ◽  
Víctor J. S. Béjar ◽  
Rafael Rebolo

We have obtained series of images in the near infrared J and Ks bands for seven L-type dwarfs with a duration of 3 to 6 hours. We present results on: 1) the amplitude of variability associated with atmospheric changes over time scales from minutes to several hours; 2) the search for cool companions in wide orbits; 3) the search for transits of brown dwarfs and planetary companions in very close orbits.


1998 ◽  
Vol 11 (1) ◽  
pp. 423-424
Author(s):  
Motohide Tamura ◽  
Yoichi Itoh ◽  
Yumiko Oasa ◽  
Alan Tokunaga ◽  
Koji Sugitani

Abstract In order to tackle the problems of low-mass end of the initial mass function (IMF) in star-forming regions and the formation mechanisms of brown dwarfs, we have conducted deep infrared surveys of nearby molecular clouds. We have found a significant population of very low-luminosity sources with IR excesses in the Taurus cloud and the Chamaeleon cloud core regions whose extinction corrected J magnitudes are 3 to 8 mag fainter than those of typical T Tauri stars in the same cloud. Some of them are associated with even fainter companions. Follow-up IR spectroscopy has confirmed for the selected sources that their photospheric temperature is around 2000 to 3000 K. Thus, these very low-luminosity young stellar sources are most likely very low-mass T Tauri stars, and some of them might even be young brown dwarfs.


1998 ◽  
Vol 11 (1) ◽  
pp. 435-435
Author(s):  
Hugh R.A. Jones ◽  
Mike R.S. Hawkins

In a recent survey for faint red stars from a digital stack of Schmidt plates a number of candidate objects were identified. Parallax’s for three of these objects have been reported showing them to have luminosities which interpreted within the available evolutionary models indicate them to be good brown dwarf candidates. Here we examine spectra of these objects and others from the plate stack. Using standard spectral indices we find that for a given spectral type their spectra are more consistent with the Pleiades brown dwarfs (PPL 15, Teide 1 and Calar 3) than with standard late-type M dwarfs. Our interpretation is that this is due to their selection by RF IN colours which at values > 3 preferentially selects objects with relatively low gravities. For late-type M dwarfs and brown dwarfs low gravities are expected to be a reliable indication of youth. We also notice that the stack objects generally have strong FeH absorption for their spectral type. Current model atmospheres suggest that FeH strongly increases in strength toward lower metallicities and lower temperatures. We believe that this is not consistent with the available observational evidence from late-type M dwarfs. It is possible that solid Fe is forming inthe low temperature atmospheres relatively depleting FeH strengths toward lower temperatures. We find some evidence that for dwarfs at low temperatures dust formation is less prevalent in lower gravity objects suggesting that dwarfs at low temperatures stronger FeH may be an indication of youth. In addition to the spectral evidence the three stack objects whose parallax’s have been measured show small tangential velocities which is a further indication of youth.


1998 ◽  
Vol 11 (1) ◽  
pp. 439-440
Author(s):  
T. Tsuji ◽  
K. Ohnaka ◽  
W. Aoki ◽  
H.R.A. Jones

Spectra of M dwarfs are rich in atomic and molecular lines. These spectra provide such basic information as Teff (or radius), log g (or mass), surface chemical composition, and something more (e.g. activity) if properly interpreted. It is recognized, however, that spectra of M dwarfs are already dimmed by the dust formed in their photospheres (Tsuji et al. 1996a) and this effect, which has been overlooked until recently, should be taken into account in any interpretation and analysis of the spectra of very low mass objects (VLMOs) including late M dwarfs and brown dwarfs.


2010 ◽  
Vol 716 (2) ◽  
pp. L120-L124 ◽  
Author(s):  
K. L. Luhman ◽  
E. E. Mamajek
Keyword(s):  

1989 ◽  
Vol 261 (3) ◽  
pp. 28-28
Author(s):  
J.H.
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document