scholarly journals A fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics

2015 ◽  
Vol 451 (1) ◽  
pp. 813-826 ◽  
Author(s):  
Daniel J. Price ◽  
Guillaume Laibe
2020 ◽  
Vol 499 (3) ◽  
pp. 3806-3818
Author(s):  
Daniel Mentiplay ◽  
Daniel J Price ◽  
Christophe Pinte ◽  
Guillaume Laibe

ABSTRACT We present a method for simulating the dynamics of a mixture of gas and multiple species of large Stokes number dust grains, typical of evolved protoplanetary discs and debris discs. The method improves upon earlier methods, in which only a single grain size could be represented, by capturing the differential backreaction of multiple dust species on the gas. This effect is greater for large dust-to-gas ratios that may be expected in the later stages of the protoplanetary disc life. We benchmark the method against analytic solutions for linear waves, drag, and shocks in dust–gas mixtures, and radial drift in a protoplanetary disc showing that the method is robust and accurate.


2019 ◽  
Vol 490 (2) ◽  
pp. 2579-2587 ◽  
Author(s):  
Josh Calcino ◽  
Daniel J Price ◽  
Christophe Pinte ◽  
Nienke van der Marel ◽  
Enrico Ragusa ◽  
...  

ABSTRACT We test the hypothesis that the disc cavity in the ‘transition disc’ Oph IRS 48 is carved by an unseen binary companion. We use 3D dust–gas smoothed-particle hydrodynamics simulations to demonstrate that marginally coupled dust grains concentrate in the gas overdensity that forms in the cavity around a low binary mass ratio binary. This produces high contrast ratio dust asymmetries at the cavity edge similar to those observed in the disc around IRS 48 and other transition discs. This structure was previously assumed to be a vortex. However, we show that the observed velocity map of IRS 48 displays a peculiar asymmetry that is not predicted by the vortex hypothesis. We show the unusual kinematics are naturally explained by the non-Keplerian flow of gas in an eccentric circumbinary cavity. We further show that perturbations observed in the isovelocity curves of IRS 48 may be explained as the product of the dynamical interaction between the companion and the disc. The presence of an ∼0.4 M⊙ companion at an ∼10 au separation can qualitatively explain these observations. High spatial resolution line and continuum imaging should be able to confirm this hypothesis.


2008 ◽  
Vol 96 (6) ◽  
pp. 263-268 ◽  
Author(s):  
E. Mounif ◽  
V. Bellenger ◽  
A. Ammar ◽  
R. Ata ◽  
P. Mazabraud ◽  
...  

2020 ◽  
Vol 59 (40) ◽  
pp. 18236-18246
Author(s):  
Tianwen Dong ◽  
Yadong He ◽  
Jianchun Wu ◽  
Shiyu Jiang ◽  
Xingyuan Huang ◽  
...  

Author(s):  
Steven J. Lind ◽  
Benedict D. Rogers ◽  
Peter K. Stansby

This paper presents a review of the progress of smoothed particle hydrodynamics (SPH) towards high-order converged simulations. As a mesh-free Lagrangian method suitable for complex flows with interfaces and multiple phases, SPH has developed considerably in the past decade. While original applications were in astrophysics, early engineering applications showed the versatility and robustness of the method without emphasis on accuracy and convergence. The early method was of weakly compressible form resulting in noisy pressures due to spurious pressure waves. This was effectively removed in the incompressible (divergence-free) form which followed; since then the weakly compressible form has been advanced, reducing pressure noise. Now numerical convergence studies are standard. While the method is computationally demanding on conventional processors, it is well suited to parallel processing on massively parallel computing and graphics processing units. Applications are diverse and encompass wave–structure interaction, geophysical flows due to landslides, nuclear sludge flows, welding, gearbox flows and many others. In the state of the art, convergence is typically between the first- and second-order theoretical limits. Recent advances are improving convergence to fourth order (and higher) and these will also be outlined. This can be necessary to resolve multi-scale aspects of turbulent flow.


2013 ◽  
Vol 61 (1) ◽  
pp. 111-121 ◽  
Author(s):  
T. Jankowiak ◽  
T. Łodygowski

Abstract The paper considers the failure study of concrete structures loaded by the pressure wave due to detonation of an explosive material. In the paper two numerical methods are used and their efficiency and accuracy are compared. There are the Smoothed Particle Hydrodynamics (SPH) and the Finite Element Method (FEM). The numerical examples take into account the dynamic behaviour of concrete slab or a structure composed of two concrete slabs subjected to the blast impact coming from one side. The influence of reinforcement in the slab (1, 2 or 3 layers) is also presented and compared with a pure concrete one. The influence of mesh density for FEM and the influence of important parameters in SPH like a smoothing length or a particle distance on the quality of the results are discussed in the paper


Sign in / Sign up

Export Citation Format

Share Document