Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions

2017 ◽  
Vol 475 (2) ◽  
pp. 1819-1828 ◽  
Author(s):  
G Fedoseev ◽  
C Scirè ◽  
G A Baratta ◽  
M E Palumbo
Author(s):  
E. Dartois ◽  
M. Chabot ◽  
T. Id Barkach ◽  
H. Rothard ◽  
P. Boduch ◽  
...  

1994 ◽  
Vol 269 (3) ◽  
pp. 641-648 ◽  
Author(s):  
P. R. A. Farquhar ◽  
T. J. Millar ◽  
Eric Herbst

2011 ◽  
Vol 7 (S280) ◽  
pp. 390-404 ◽  
Author(s):  
Harold Linnartz ◽  
Jean-Baptiste Bossa ◽  
Jordy Bouwman ◽  
Herma M. Cuppen ◽  
Steven H. Cuylle ◽  
...  

AbstractIt has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex “organic” compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.


2014 ◽  
Vol 23 (2) ◽  
Author(s):  
Juris Kalvāns

AbstractCosmic rays are able to heat interstellar dust grains. This may enhance molecule mobility in icy mantles that have accumulated on the grains in dark cloud cores. A three-phase astrochemical model was used to investigate the molecule mobility in interstellar ices. Specifically, diffusion through pores in ice between the subsurface mantle and outer surface, assisted by whole-grain heating, was considered. It was found that the pores can serve as an efficient transport route for light species. The diffusion of chemical radicals from the mantle to the outer surface are most effective. These species accumulate in the mantle because of photodissociation by the cosmic-ray induced photons. The faster diffusion of hydrogen within the warm ice enhances the hydrogenation of radicals on pore surfaces. The overall result of the whole grain heating-induced radial diffusion in ice are higher abundances of ice species, whose synthesis involve light radicals. Examples of stable species synthesized this way include complex organic molecules, OCS, H


2000 ◽  
Vol 197 ◽  
pp. 135-146 ◽  
Author(s):  
P. Ehrenfreund ◽  
W. A. Schutte

In the recent years revolutionary results concerning the nature of icy dust particles have been obtained with the help of the Infrared Space Observatory (ISO) and ground based observations. To date interstellar ice features of H2O, CO, CO2, CH3OH, CH4, H2CO, OCS and HCOOH as well as other minor species are observed. Interstellar grains act as important catalysts in the interstellar medium. Processes such as UV irradiation, cosmic ray processing and temperature variations determine the grain mantle growth and chemical evolution. ISO has revealed that ice segregation is an important and ubiquitous process in the vicinity of massive protostars and reflects the extensive thermal processing of grains in such environments.In this paper a recent view on the inventory of interstellar ices is presented. Constraints on the reservoirs of oxygen in dense clouds are discussed, taking into account recent measurements of oxygen-bearing species. Large abundances of CO2 and CH3OH in dense molecular clouds provide challenging perspectives to investigate the differences of ice chemistry in the vicinity of high and low-mass protostars. Accurate abundances of ice species and knowledge on the ice distribution in the protostellar regions are an important tool to define the environmental conditions in molecular clouds. A global understanding of interstellar ice chemistry also allows monitoring the incorporation and evolution of volatiles in planetesimals and comets and to reveal processes predominant in the early Solar System.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


Author(s):  
D.F. Blake ◽  
LJ. Allamandola ◽  
G. Palmer ◽  
A. Pohorille

The natural history of the biogenic elements H, C, N, O, P and S in the cosmos is of great interest because it is these elements which comprise all life. Material ejected from stars (or pre-existing in the interstellar medium) is thought to condense into diffuse bodies of gravitationally bound gas and dust called cold interstellar molecular clouds. Current theories predict that within these clouds, at temperatures of 10-100° K, gases (primarily H2O, but including CO, CO2, CH3OH, NH3, and others) condense onto submicron silicate grains to form icy grain mantles. This interstellar ice represents the earliest and most primitive association of the biogenic elements. Within these multicomponent icy mantles, pre-biotic organic compounds are formed during exposure to UV radiation. It is thought that icy planetesimals (such as comets) within our solar system contain some pristine interstellar material, including ices, and may have (during the early bombardment of the solar system, ∼4 Ga) carried this material to Earth.Despite the widespread occurrence of astrophysical ices and their importance to pre-biotic organic evolution, few experimental data exist which address the relevant phase equilibria and possible structural states. A knowledge of the petrology of astrophysical ice analogs will allow scientists to more confidently interpret astronomical IR observations. Furthermore, the development and refinement of procedures for analyzing ices and other materials at cryogenic temperatures is critical to the study of materials returned from the proposed Rosetta comet nucleus and Mars sample return missions.


1982 ◽  
Vol 43 (C8) ◽  
pp. C8-69-C8-88 ◽  
Author(s):  
B. Rossi
Keyword(s):  

2010 ◽  
Vol 180 (5) ◽  
pp. 519 ◽  
Author(s):  
L.I. Dorman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document