infrared space observatory
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 8)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 257 (2) ◽  
pp. 36
Author(s):  
Matthew J. Millard ◽  
Aravind P. Ravi ◽  
Jeonghee Rho ◽  
Sangwook Park

Abstract We present far-infrared (FIR) spectroscopy of supernova remnants (SNRs) based on the archival data of the Infrared Space Observatory taken with the Long Wavelength Spectrometer (LWS). Our sample includes previously unpublished profiles of line and continuum spectra for 20 SNRs in the Galaxy and Magellanic Clouds. In several SNRs including G21.5–0.9, G29.7–0.3, the Crab Nebula, and G320.4–1.2, we find evidence for broad [O i], [O iii], [N ii], and [C ii] lines with velocity dispersions up to a few 103 km s−1, indicating that they are associated with high-velocity SN ejecta. Our detection of Doppler-broadened atomic emission lines and a bright FIR continuum hints at the presence of newly formed dust in SN ejecta. For G320.4–1.2, we present the first estimate of an ejecta-dust mass of 0.1–0.2 M ⊙, which spatially coincides with the broad-line emission, by applying a blackbody model fit with components of the SNR and background emission. Our sample includes raster maps of 63 μm, 145 μm [O i], and 158 μm [C ii] lines toward SNRs Kes 79, CTB 109, and IC 443. Based on these line intensities, we suggest interacting shock types in these SNRs. Finally, we compare our LWS spectra of our sample SNRs with the spectra of several H ii regions, and discuss their FIR line intensity ratios and continuum properties. Follow-up observations with modern instruments (e.g., JWST and SOFIA) with higher spatial and spectral resolution are encouraged for an extensive study of the SN ejecta and the SN dust.


2021 ◽  
Author(s):  
Glenn Orton ◽  
James Sinclair ◽  
Leigh Fletcher ◽  
Naomi Rowe-Gurney ◽  
Michael Roman ◽  
...  

<p>Observations of thermal emission from Uranus and Neptune have been made over a broad wavelength range from ground-based platforms, airborne observatories, Earth-proximal spacecraft and from the Voyager-2 flybys in the 1980s.  Observations since the Voyager flybys have included long-wavelength observations of disk-averaged radiances from the Infrared Space Observatory and the Herschel Space Observatory covering the far-infrared to millimeter range. We present recent airborne spectra from SOFIA covering 17-35 µm, together with Akari and Spitzer spectroscopy at wavelengths extending down to 7 µm, below which contributions from reflected sunlight and potential auroral emissions may confuse the signature of thermal emission.  We also show how these disk-averaged spectra are complemented by ground-based filtered imaging and spectroscopy at 8-10m telescopes, which have enabled spatially resolved measurements, complementing those of Voyager IRIS from several decades ago. The critical insights into the structure, chemistry and dynamics of the atmospheres of these Ice Giants attest to the need for significant parts of this spectral region to be included in the instrument complement to be assigned to spacecraft sent to these planets.  A vigorous program of Earth-based observations in the accessible spectral range should accompany the spacecraft capability in order to track potential seasonal and non-seasonal variability of these planets, as is evident in the atmospheres of both Jupiter and Saturn. The latter would include mid-infrared observations from the James Webb Space Telescope.</p>


Author(s):  
Peter R. Roelfsema ◽  
Hiroshi Shibai ◽  
Hidehiro Kaneda ◽  
Marc Sauvage ◽  
Martin Giard ◽  
...  

2020 ◽  
Author(s):  
Peter Sarre

<p>Dust particles play a major role in the formation, evolution and chemistry of interstellar clouds, stars, and planetary systems. Commonly identified forms include amorphous and crystalline carbon-rich particles and silicates. Also present in many astrophysical environments are polycyclic aromatic hydrocarbons (PAHs), detected through their infrared emission, and which are essentially small flakes of graphene. Astronomical observations over the past four decades have revealed a widespread unassigned ‘extended red emission’ (ERE) feature which is attributed to luminescence of dust grains. A luminescence feature with similar characteristics to ERE has been found in organic material in interplanetary dust particles and carbonaceous chondrites.  </p> <p>There is a strong similarity between laboratory optical emission spectra of graphene oxide (GO) and ERE, leading to this proposal that emission from GO nanoparticles is the origin of ERE and that heteroatom-containing PAH structures are a significant component of interstellar dust. The proposal is supported by infrared emission features detected by the <em>Infrared Space Observatory (ISO)</em> and the <em>Spitzer Space Telescope</em>.  </p> <p>Insoluble Organic Material (IOM) has a chemical structure with some similarities to graphene oxide.  It is suggested this may contribute to the discussion as to whether IOM has an origin in the interstellar medium or the solar nebula, or some combination.</p>


2020 ◽  
Vol 10 (1) ◽  
pp. 12-20
Author(s):  
M. Kasheba ◽  
B. Melekh

The grid of new photoionisation models for planetary nebulae (PNe) along the evolutionary tracks of their nuclei was calculated, taking into account the dust presence with abundances that correspond to the averaged ones for Milky Way and Large Magellanic Cloud. The calculations were performed by the last version of G. Ferland's code Cloudy v17.01 using the semi-empirical law derived by Golovatyy-Mal'kov to describe the radial density distribution of matter in the nebular envelope of PN. Resulting modelling spectra were compared with the corresponding observed emission line spectra of PNe in optical range, obtained previously by other authors. Also the database of observations by the Infrared Space Observatory and Spitzer have been used to compare the results of synthetic photometry with the observed photometric data. It was shown that the intensities of strong emission lines in optical range as well as the observed color-color diagrams obtained using total fluxes in the 3.6 μm, 4.5μm, 8.0μm and 24.0 μm bands are reproduced very well by our models, while the results of synthetic IR-photometry based on total fluxes in the band 5.8 μm show discrepancies with corresponding observed data.


2019 ◽  
Vol 631 ◽  
pp. A54 ◽  
Author(s):  
Tao Chen ◽  
Aigen Li

Context. As the fourth most abundant element in the universe, carbon (C) is widespread in the interstellar medium (ISM) in various allotropic forms (e.g. fullerenes have been identified unambiguously in many astronomical environments, the presence of polycyclic aromatic hydrocarbon molecules in space has been commonly acknowledged, and presolar graphite, as well as nanodiamonds, have been identified in meteorites). As stable allotropes of these species, whether carbon nanotubes (CNTs) and their hydrogenated counterparts are also present in the ISM or not is unknown. Aims. The aim of the present works is to explore the possible routes for the formation of CNTs in the ISM and calculate their fingerprint vibrational spectral features in the infrared (IR). Methods. We studied the hydrogen-abstraction and acetylene-addition (HACA) mechanism and investigated the synthesis of nanotubes using density functional theory (DFT). The IR vibrational spectra of CNTs and hydrogenated nanotubes (HNTs), as well as their cations, were obtained with DFT. Results. We find that CNTs could be synthesized in space through a feasible formation pathway. CNTs and cationic CNTs, as well as their hydrogenated counterparts, exhibit intense vibrational transitions in the IR. Their possible presence in the ISM could be investigated by comparing the calculated vibrational spectra with astronomical observations made by the Infrared Space Observatory, Spitzer Space Telescope, and particularly the upcoming James Webb Space Telescope.


2019 ◽  
Vol 630 ◽  
pp. A87 ◽  
Author(s):  
T. Cavalié ◽  
V. Hue ◽  
P. Hartogh ◽  
R. Moreno ◽  
E. Lellouch ◽  
...  

Context. The origin of water in the stratospheres of giant planets has been an outstanding question ever since its first detection by the Infrared Space Observatory some 20 years ago. Water can originate from interplanetary dust particles, icy rings and satellites, and large comet impacts. Analyses of Herschel Space Observatory observations have proven that the bulk of Jupiter’s stratospheric water was delivered by the Shoemaker-Levy 9 impacts in 1994. In 2006, the Cassini mission detected water plumes at the South Pole of Enceladus, which made the moon a serious candidate for Saturn’s stratospheric water. Further evidence was found in 2011 when Herschel demonstrated the presence of a water torus at the orbital distance of Enceladus that was fed by the moon’s plumes. Finally, water falling from the rings onto Saturn’s uppermost atmospheric layers at low latitudes was detected during the final orbits of Cassini’s end-of-mission plunge into the atmosphere. Aims. In this paper, we use Herschel mapping observations of water in Saturn’s stratosphere to identify its source. Methods. We tested several empirical models against the Herschel-HIFI and -PACS observations, which were collected on December 30, 2010, and January 2, 2011, respectively. Results. We demonstrate that Saturn’s stratospheric water is not uniformly mixed as a function of latitude, but peaks at the equator and decreases poleward with a Gaussian distribution. We obtain our best fit with an equatorial mole fraction 1.1 ppb and a half width at half maximum of 25°, when accounting for a temperature increase in the two warm stratospheric vortices produced by Saturn’s Great Storm of 2010–2011. Conclusions. This work demonstrates that Enceladus is the main source of Saturn’s stratospheric water.


2019 ◽  
Vol 490 (1) ◽  
pp. L17-L20 ◽  
Author(s):  
P J Sarre

ABSTRACT Dust particles play a major role in the formation, evolution and chemistry of interstellar clouds, stars, and planetary systems. Commonly identified forms include amorphous and crystalline carbon-rich particles and silicates. Also present in many astrophysical environments are polycyclic aromatic hydrocarbons (PAHs), detected through their infrared emission, and which are essentially small flakes of graphene. Astronomical observations over the past four decades have revealed a widespread unassigned ‘extended red emission’ (ERE) feature which is attributed to luminescence of dust grains. Numerous potential carriers for ERE have been proposed but none has gained general acceptance. In this Letter it is shown that there is a strong similarity between laboratory optical emission spectra of graphene oxide (GO) and ERE, leading to this proposal that emission from GO nanoparticles is the origin of ERE and that these are a significant component of interstellar dust. The proposal is supported by infrared emission features detected by the Infrared Space Observatory (ISO) and the Spitzer Space Telescope.


Author(s):  
Peter R. Roelfsema ◽  
Hiroshi Shibai ◽  
Kees Wafelbakker ◽  
Gert de Lange ◽  
Martin Giard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document