Data on inelastic processes in low-energy collisions of barium atoms and ions with hydrogen atoms and anions

2018 ◽  
Vol 478 (3) ◽  
pp. 3952-3960 ◽  
Author(s):  
Andrey K Belyaev ◽  
Svetlana A Yakovleva

ABSTRACT Inelastic rate coefficients for 686 partial processes in low-energy Ba + H, Ba+ + H−, Ba++ H and Ba2+ + H− collisions are calculated. These data are needed for the non-local thermodynamic equilibrium (non-LTE) modelling of Ba i and Ba ii spectra, especially in cool stellar atmospheres. The calculations of the rate coefficients are performed by means of the quantum model approach, based on the asymptotic semi-empirical method for the electronic structure calculations and on multichannel formulas for the non-adiabatic nuclear dynamical calculations. The inelastic rate coefficients for all transitions between the 17 lowest covalent states and one ionic molecular state in Ba + H and Ba+ + H− collisions, as well as the inelastic rate coefficients for all transitions between the 19 lowest covalent states and one ionic molecular state in Ba+ + H and Ba2+ + H− collisions are calculated. In Ba+ + H− collisions, the highest rate coefficients correspond to the mutual neutralization processes into the   Ba(6s6p1P°), Ba(6s7s3S) and   Ba(6s7s1S) final states, with the largest value of 5.93 × 10−8 cm3 s−1 at T = 6000 K for the process Ba+ + H− →   Ba(6s7s3S) + H. The highest rate coefficient for excitation and de-excitation processes in Ba + H collisions corresponds to the   Ba(6s7s1S) →  Ba(6s7s3S) transition, with the value of 7.62 × 10−9 cm3 s−1 at T = 6000 K. In Ba2+ + H− collisions, the highest rate coefficients correspond to the neutralization processes into the Ba+( 7p2P°), Ba+( 4f 2F°), Ba+( 6d 2D) and Ba+( 7s 2S) final states. The highest neutralization rate has the value of 3.96 × 10−8 cm3 s−1 at T = 6000 K for the Ba2+ + H− → Ba+( 7p 2P°) + H process. The largest rate coefficient for excitation and de-excitation processes in Ba+ + H collisions corresponds to the Ba+(7s 2S) → Ba+( 6p 2P°) transition, with the value of 1.23 × 10−9  cm3 s−1 at T = 6000 K.

2019 ◽  
Vol 625 ◽  
pp. A78 ◽  
Author(s):  
A. M. Amarsi ◽  
P. S. Barklem

Low-energy inelastic collisions with neutral hydrogen atoms are important processes in stellar atmospheres, and a persistent source of uncertainty in non-LTE modelling of stellar spectra. We have calculated and studied excitation and charge transfer of C I and of N I due to such collisions. We used a previously presented method that is based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions for the adiabatic potential energies, combined with the multichannel Landau-Zener model for the collision dynamics. We find that charge transfer processes typically lead to much larger rate coefficients than excitation processes do, consistent with studies of other atomic species. Two-electron processes were considered and lead to non-zero rate coefficients that can potentially impact statistical equilibrium calculations. However, they were included in the model in an approximate way, via an estimate for the two-electron coupling that was presented earlier in the literature: the validity of these data should be checked in a future work.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamad Akbar Ali ◽  
M. Balaganesh ◽  
Faisal A. Al-Odail ◽  
K. C. Lin

AbstractThe rate coefficients for OH + CH3OH and OH + CH3OH (+ X) (X = NH3, H2O) reactions were calculated using microcanonical, and canonical variational transition state theory (CVT) between 200 and 400 K based on potential energy surface constructed using CCSD(T)//M06-2X/6-311++G(3df,3pd). The results show that OH + CH3OH is dominated by the hydrogen atoms abstraction from CH3 position in both free and ammonia/water catalyzed ones. This result is in consistent with previous experimental and theoretical studies. The calculated rate coefficient for the OH + CH3OH (8.8 × 10−13 cm3 molecule−1 s−1), for OH + CH3OH (+ NH3) [1.9 × 10−21 cm3 molecule−1 s−1] and for OH + CH3OH (+ H2O) [8.1 × 10−16 cm3 molecule−1 s−1] at 300 K. The rate coefficient is at least 8 order magnitude [for OH + CH3OH(+ NH3) reaction] and 3 orders magnitude [OH + CH3OH (+ H2O)] are smaller than free OH + CH3OH reaction. Our calculations predict that the catalytic effect of single ammonia and water molecule on OH + CH3OH reaction has no effect under tropospheric conditions because the dominated ammonia and water-assisted reaction depends on ammonia and water concentration, respectively. As a result, the total effective reaction rate coefficients are smaller. The current study provides a comprehensive example of how basic and neutral catalysts effect the most important atmospheric prototype alcohol reactions.


Atoms ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 34
Author(s):  
Svetlana A. Yakovleva ◽  
Andrey K. Belyaev ◽  
Maria Bergemann

Rate coefficients for inelastic processes in low-energy Co + H, Co + + H − , Co + + H , and Co 2 + + H − collisions are estimated using the quantum simplified model. Considerations include 44 triplet and 55 quintet molecular states of CoH, as well as 91 molecular states of CoH + . The estimations provide the rate coefficients for the 4862 partial processes (mutual neutralization, ion-pair formation, excitation, and de-excitation) in the neutral CoH system, and for the 8190 partial processes in the ionized CoH + system, 13 , 052 processes in total. At T = 6000 K, the rate coefficients with the largest values around 6 × 10 − 8 cm 3 s − 1 correspond to the mutual neutralization processes into the Co ( e 2 F ) + H and Co + ( g 5 F ) + H final channels in the neutral and ionized systems, respectively. Among the excitation and de-excitation processes in Co + H and in Co + + H collisions, at T = 6000 K, the largest rate coefficients have values around 7 × 10 − 9 cm 3 s − 1 and correspond to the processes Co ( y 2 S ∘ ) + H → Co ( e 2 F ; v 4 D ∘ ) + H and Co + ( h 3 P ) + H → Co + ( g 3 P ; g 5 P ; g 5 F ) + H , respectively. The calculations single out inelastic processes important for non-local thermodynamic equilibrium (NLTE) modelling of Co I and Co II spectra in stellar atmospheres. The test NLTE calculations are carried out, and it is found that the new collision rates have a strong effect on the line formation and NLTE abundance corrections.


2018 ◽  
Vol 612 ◽  
pp. A90 ◽  
Author(s):  
P. S. Barklem

Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau–Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000–20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant.


2018 ◽  
Vol 610 ◽  
pp. A57 ◽  
Author(s):  
P. S. Barklem

Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000–20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates.


2020 ◽  
Vol 637 ◽  
pp. A28
Author(s):  
J. Grumer ◽  
P. S. Barklem

Data for inelastic processes due to hydrogen atom collisions with manganese and titanium are needed for accurate modeling of the corresponding spectra in late-type stars. In this work excitation and charge transfer in low-energy Mn+H and Ti+H collisions have been studied theoretically using a method based on an asymptotic two-electron linear combination of an atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model to treat the dynamics. Extensive calculations of charge transfer (mutual neutralization, ion-pair production), excitation and de-excitation processes in the two collisional systems are carried out for all transitions between covalent states dissociating to energies below the first ionic limit and the dominating ionic states. Rate coefficients are determined for temperatures in the range 1000–20 000 K in steps of 1000 K. Like for earlier studies of other atomic species, charge transfer processes are found to lead to much larger rate coefficients than excitation processes.


Author(s):  
Н.М. Эрдевди ◽  
А.И. Булгакова ◽  
О.Б. Шпеник ◽  
А.Н. Завилопуло

Excitation processes in collisions of low-energy electrons (1-100 eV) with glutamine molecules in the gas phase have been studied. The optical emission spectra were measured in the wavelength range from 250-520 nm and it was found that, as a result of the decomposition of glutamine molecules, OH molecular emissions and some other molecular fragments are most efficiently formed. And excited hydrogen atoms are also detected. It was found that the excitation thresholds of molecular emissions are 10–12 eV, while the atomic lines of hydrogen are 13–15 eV. The energy dependences of the excitation of individual emissions from a threshold to 50 eV are also presented.


Author(s):  
Daniel C Morris ◽  
Stuart W Prescott ◽  
Jason B Harper

A series of ionic liquids based on the 1-alkyl-3-methylimidazolium cations were examined as components of the solvent mixture for a bimolecular substitution process. The effects on both the rate coefficient...


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Dongzheng Yang ◽  
Jing Huang ◽  
Xixi Hu ◽  
Hua Guo ◽  
Daiqian Xie

Abstract Inelastic collisions involving molecular species are key to energy transfer in gaseous environments. They are commonly governed by an energy gap law, which dictates that transitions are dominated by those between initial and final states with roughly the same ro-vibrational energy. Transitions involving rotational inelasticity are often further constrained by the rotational angular momentum. Here, we demonstrate using full-dimensional quantum scattering on an ab initio based global potential energy surface (PES) that HF–HF inelastic collisions do not obey the energy and angular momentum gap laws. Detailed analyses attribute the failure of gap laws to the exceedingly strong intermolecular interaction. On the other hand, vibrational state-resolved rate coefficients are in good agreement with existing experimental results, validating the accuracy of the PES. These new and surprising results are expected to extend our understanding of energy transfer and provide a quantitative basis for numerical simulations of hydrogen fluoride chemical lasers.


Sign in / Sign up

Export Citation Format

Share Document