scholarly journals Nuclear starburst activity induced by elongated bulges in spiral galaxies

2018 ◽  
Vol 479 (1) ◽  
pp. 562-569 ◽  
Author(s):  
Eunbin Kim ◽  
Sungsoo S Kim ◽  
Yun-Young Choi ◽  
Gwang-Ho Lee ◽  
Richard de Grijs ◽  
...  

ABSTRACT We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr < −19.5 mag at 0.02 ≤ $z$ < 0.055 by excluding barred galaxies, where the aperture of the SDSS spectroscopic fibre covers the bulges of the galaxies. We adopt the ellipticity of bulges measured by Simard et al., who performed two-dimensional bulge + disc decompositions using the SDSS images of galaxies, and identify nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.

Author(s):  
Xin-Fa Deng ◽  
Guisheng Yu ◽  
Peng Jiang

AbstractUsing two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 7 , we explore influences of galaxy interactions on AGN activity. It is found that in the faint volume-limited sample, paired galaxies have a slightly higher AGN fraction than isolated galaxies, whereas in the luminous volume-limited sample, an opposite trend can be observed. The significance is <1σ. Thus, we do not observe strong evidence that interactions or mergers likely trigger the AGN activity.


2013 ◽  
Vol 22 (2) ◽  
Author(s):  
Xin-Fa Deng ◽  
Fuyang Zhang

AbstractFrom the apparent magnitude-limited the Main galaxy sample of the Sloan Digital Sky Survey Data Release 7, we construct a paired galaxy sample and a control sample without close companions with the projected separations


2020 ◽  
Vol 494 (4) ◽  
pp. 5839-5850
Author(s):  
Minbae Kim ◽  
Yun-Young Choi ◽  
Sungsoo S Kim

ABSTRACT We explore the significance of bars in triggering central star formation (SF) and active galactic nucleus (AGN) activity for spiral galaxy evolution using a volume-limited sample with 0.020 &lt; z &lt; 0.055, Mr &lt; −19.5, and σ &gt; 70 km s−1 selected from Sloan Digital Sky Survey Data Release 7. On a central SF rate–σ plane, we measure the fraction of galaxies with strong bars in our sample and also the AGN fractions for barred and non-barred galaxies, respectively. The comparison between the bar and AGN fractions reveals a causal connection between the two phenomena of SF quenching and AGN activity. A massive black hole and abundant gas fuels are sufficient conditions to trigger AGNs. We infer that the AGNs triggered by satisfying the two conditions drive the strong AGN feedback, suddenly suppressing the central SF and leaving the SF sequence. We find that in galaxies where either of the two conditions is not sufficient, bars are a great help for the AGN triggering, accelerating the entire process of evolution, which is particularly evident in pseudo-bulge galaxies. All of our findings are obtained only when plotted in terms of their central velocity dispersion and central SFR (not galactic scale SFR), indicating that the AGN-driven SF quenching is confined in the central kpc region.


2012 ◽  
Vol 10 (H16) ◽  
pp. 324-324
Author(s):  
Karen L. Masters ◽  

AbstractWe use visual classifications of the brightest 250,000 galaxies in the Sloan Digital Sky Survey Main Galaxy Sample provided by citizen scientists via the Galaxy Zoo project (www.galaxyzoo.org, Lintott et al. 2008) to identify a sample of local disc galaxies with reliable bar identifications.These data, combined with information on the atomic gas content from the ALFALFA survey (Haynes et al. 2011) show that disc galaxies with higher gas content have lower bar fractions.We use a gas deficiency parameter to show that disc galaxies with more/less gas than expected for their stellar mass are less/more likely to host bars. Furthermore, we see that at a fixed gas content there is no residual correlation between bar fraction and stellar mass. We argue that this suggests previously observed correlations between galaxy colour/stellar mass and (strong) bar fraction (e.g. from the sample in Masters et al. 2011, and also see Nair & Abraham 2010) could be driven by the interaction between bars and the gas content of the disc, since more massive, optically redder disc galaxies are observed to have lower gas contents.Furthermore we see evidence that at a fixed gas content the global colours of barred galaxies are redder than those of unbarred galaxies. We suggest that this could be due to the exchange of angular momentum beyond co-rotation which might stop a replenishment of gas from external sources, and act as a source of feedback to temporarily halt or reduce the star formation in the outer parts of barred discs.These results (published as Masters et al. 2012) combined with those of Skibba et al. (2012), who use the same sample to show a clear (but subtle and complicated) environmental dependence of the bar fraction in disc galaxies, suggest that bars are intimately linked to the evolution of disc galaxies.


2006 ◽  
Vol 2 (S235) ◽  
pp. 234-235
Author(s):  
Premana W. Premadi ◽  
A. Sitti Maryam

This work is a preliminary result of our attempt to examine the use of SFR in the study of galaxy evolution. For this purpose we use the Sloan Digital Sky Survey Data Release 2 (SDSS DR2) Abazajian et al. (2004) and the SFR Catalogue generated from this data set by Brinchmann et al. (2004) and Kaufmann et al. (2003). Following Kewley et al. (2001) we use the Diagnostic Diagram, log ([OIII]/Hβ) vs log ([NII]/Hα), to separate the star forming galaxies from other emission lines sources such as AGN. Choosing only those with S/N > 3 out of the Brinchmann et al. (2004) catalogue, we arrive at about 200 thousand galaxies as our starting SFR subsample. With 0.05 < z < 0.22 and limit at r = 17.77, the subsample can be used to reconstruct the properties of a volume limited sample of galaxies with M* = 6 1010Modot. We benefit from the fact that Brinchmann et al. (2004) SFR Catalogue has already been aperture-corrected using the likelihood distribution P(SFR/Li/colour) scheme. For the environment, we use the data generated by Kaufmann et al. (2003), and arrive at about 40 thousand target galaxies. In this work the environment is characterised by the number (N=0-30) of neighbouring galaxies within a projected radius of 2 Mpc and velocity di.erence of 500km/s from each target galaxy, and the magnitude limit is 14.5 < r < 17.77.


2003 ◽  
Vol 584 (1) ◽  
pp. 210-227 ◽  
Author(s):  
Percy L. Gomez ◽  
Robert C. Nichol ◽  
Christopher J. Miller ◽  
Michael L. Balogh ◽  
Tomotsugu Goto ◽  
...  

2021 ◽  
Vol 502 (3) ◽  
pp. 4154-4169
Author(s):  
Amy L Rankine ◽  
James H Matthews ◽  
Paul C Hewett ◽  
Manda Banerji ◽  
Leah K Morabito ◽  
...  

ABSTRACT We present an investigation of the low-frequency radio and ultraviolet properties of a sample of ≃10 500 quasars from the Sloan Digital Sky Survey Data Release 14, observed as part of the first data release of the Low-Frequency-Array Two-metre Sky Survey. The quasars have redshifts 1.5 &lt; z &lt; 3.5 and luminosities $44.6 \lt \log _{10}\left(L_{\text{bol}}/\rm{erg\,s}^{-1}\right) \lt 47.2$. We employ ultraviolet spectral reconstructions based on an independent component analysis to parametrize the C iv λ1549-emission line that is used to infer the strength of accretion disc winds, and the He ii λ1640 line, an indicator of the soft X-ray flux. We find that radio-detected quasars are found in the same region of C iv blueshift versus equivalent-width space as radio-undetected quasars, but that the loudest, most luminous and largest radio sources exist preferentially at low C iv blueshifts. Additionally, the radio-detection fraction increases with blueshift whereas the radio-loud fraction decreases. In the radio-quiet population, we observe a range of He ii equivalent widths as well as a Baldwin effect with bolometric luminosity, whilst the radio-loud population has mostly strong He ii, consistent with a stronger soft X-ray flux. The presence of strong He ii is a necessary but not sufficient condition to detect radio-loud emission suggesting some degree of stochasticity in jet formation. Using energetic arguments and Monte Carlo simulations, we explore the plausibility of winds, compact jets, and star formation as sources of the radio quiet emission, ruling out none. The existence of quasars with similar ultraviolet properties but differing radio properties suggests, perhaps, that the radio and ultraviolet emission is tracing activity occurring on different time-scales.


2013 ◽  
Vol 22 (2) ◽  
Author(s):  
Xin-Fa Deng ◽  
Cheng-Hong Luo ◽  
Yong Xin ◽  
Ping Wu

AbstractThe apparent magnitude-limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 7 is used to investigate the environmental dependence of


Sign in / Sign up

Export Citation Format

Share Document