scholarly journals Coherent plasma-curvature radiation in FRB

2018 ◽  
Vol 481 (3) ◽  
pp. 2946-2950 ◽  
Author(s):  
J I Katz
2021 ◽  
Vol 2103 (1) ◽  
pp. 012034
Author(s):  
D P Barsukov ◽  
A A Matevosyan ◽  
I K Morozov ◽  
A N Popov ◽  
M V Vorontsov

Abstract The influence of surface small-scale magnetic field on the heating of PSR J0250+5854 polar cap is considered. It is assumed that the polar cap is heated only by reverse positrons accelerated in pulsar diode. It is supposed that pulsar diode is located near the star surface (polar cap model) and operates in the steady state space charge-limited flow regime. The reverse positron current is calculated in the framework of two models: rapid and gradually screening. To calculate the production rate of electron-positron pairs we take into account only the curvature radiation of primary electrons and its absorption in magnetic field. It is assumed that some fraction of electron-positron pairs may be created in bound state that can later be photoionized by thermal photons from star surface.


2020 ◽  
Vol 643 ◽  
pp. L14
Author(s):  
◽  
V. A. Acciari ◽  
S. Ansoldi ◽  
L. A. Antonelli ◽  
A. Arbet Engels ◽  
...  

We report the detection of pulsed gamma-ray emission from the Geminga pulsar (PSR J0633+1746) between 15 GeV and 75 GeV. This is the first time a middle-aged pulsar has been detected up to these energies. Observations were carried out with the MAGIC telescopes between 2017 and 2019 using the low-energy threshold Sum-Trigger-II system. After quality selection cuts, ∼80 h of observational data were used for this analysis. To compare with the emission at lower energies below the sensitivity range of MAGIC, 11 years of Fermi-LAT data above 100 MeV were also analysed. From the two pulses per rotation seen by Fermi-LAT, only the second one, P2, is detected in the MAGIC energy range, with a significance of 6.3σ. The spectrum measured by MAGIC is well-represented by a simple power law of spectral index Γ = 5.62 ± 0.54, which smoothly extends the Fermi-LAT spectrum. A joint fit to MAGIC and Fermi-LAT data rules out the existence of a sub-exponential cut-off in the combined energy range at the 3.6σ significance level. The power-law tail emission detected by MAGIC is interpreted as the transition from curvature radiation to Inverse Compton Scattering of particles accelerated in the northern outer gap.


1996 ◽  
Vol 160 ◽  
pp. 225-226
Author(s):  
B. Zhang ◽  
G.J. Qiao ◽  
W.P. Lin ◽  
J.L. Han

AbstractThere are three mechanisms to cause pulsar inner gap breakdown: the inverse Compton scattering (ICS) of the high energy particles off the thermal-peak photons, off the resonant-frequency photons and the curvature radiation (CR). The pulsar mode-changing phenomenon can be interpreted as a switching effect between theresonant ICS sparking modeand thethermal ICS sparking mode.


2020 ◽  
Vol 497 (2) ◽  
pp. 1543-1546 ◽  
Author(s):  
Wei-Min Gu ◽  
Tuan Yi ◽  
Tong Liu

ABSTRACT We propose a compact binary model with an eccentric orbit to explain periodically active fast radio burst (FRB) sources, where the system consists of a neutron star (NS) with strong dipolar magnetic fields and a magnetic white dwarf (WD). In our model, the WD fills its Roche lobe at periastron, and mass transfer occurs from the WD to the NS around this point. The accreted material may be fragmented into a number of parts, which arrive at the NS at different times. The fragmented magnetized material may trigger magnetic reconnection near the NS surface. The electrons can be accelerated to an ultrarelativistic speed, and therefore the curvature radiation of the electrons can account for the burst activity. In this scenario, the duty cycle of burst activity is related to the orbital period of the binary. We show that such a model may work for duty cycles roughly from 10 min to 2 d. For the recently reported 16.35-d periodicity of FRB 180916.J0158 + 65, our model does not naturally explain such a long duty cycle, since an extremely high eccentricity (e > 0.95) is required.


2001 ◽  
Vol 556 (2) ◽  
pp. 987-1001 ◽  
Author(s):  
Alice K. Harding ◽  
Alexander G. Muslimov
Keyword(s):  
X Ray ◽  

2000 ◽  
Vol 177 ◽  
pp. 457-460
Author(s):  
A. A. da Costa

AbstractThe plasma motion in pulsar magnetospheres is no longer classical, but quasi-classical, following stochastic trajectories, when random curvature radiation of high energetic gamma-ray photons takes place. This implies an extension to the relativistic kinetic theory of plasmas. But with high energies involved other quantum radiative processes become important, in the context of vacuum (quantum) electrodynamics. The consequences for pulsar radiation mechanisms will be outlined.


Sign in / Sign up

Export Citation Format

Share Document