Synchro-curvature radiation—a new and more general radiation in curved magnetic field

1996 ◽  
Vol 20 (2) ◽  
pp. 239-243 ◽  
Author(s):  
Jia-lü Zhang ◽  
K.S. Cheng
2021 ◽  
Vol 2103 (1) ◽  
pp. 012034
Author(s):  
D P Barsukov ◽  
A A Matevosyan ◽  
I K Morozov ◽  
A N Popov ◽  
M V Vorontsov

Abstract The influence of surface small-scale magnetic field on the heating of PSR J0250+5854 polar cap is considered. It is assumed that the polar cap is heated only by reverse positrons accelerated in pulsar diode. It is supposed that pulsar diode is located near the star surface (polar cap model) and operates in the steady state space charge-limited flow regime. The reverse positron current is calculated in the framework of two models: rapid and gradually screening. To calculate the production rate of electron-positron pairs we take into account only the curvature radiation of primary electrons and its absorption in magnetic field. It is assumed that some fraction of electron-positron pairs may be created in bound state that can later be photoionized by thermal photons from star surface.


1979 ◽  
Vol 32 (2) ◽  
pp. 49 ◽  
Author(s):  
VV Zheleznyakov ◽  
VE Shaposhnikov

The reabsorption of curvature radiation, i.e. radiation from relativistic electrons moving along curved magnetic field lines, is discussed. The optical depth for the ray path is calculated by use of the Einstein coefficients. It is shown that the optical depth becomes negative (maser effect) if transitions between Landau levels are absent. However, maser action is ineffective if the energy density of the relativistic particles is less than that of the magnetic field. For pulsar radio emission the magnetic energy density is assumed to exceed the particle energy density, so the observed emission cannot be coherent curvature radiation.


2012 ◽  
Vol 8 (S291) ◽  
pp. 552-554
Author(s):  
P. F. Wang ◽  
C. Wang ◽  
J. L. Han

AbstractWe investigate the curvature radiation from relativistic particles streaming along magnetic field lines and co-rotating with a pulsar. The co-rotation affects the trajectories of the particles and hence the emission properties, especially the polarization. For three density models in the form of core, cone and patches, we calculate the polarized emission at a given height and also the integrated emission for the whole open field line region, and try to explain the generation of circular polarization.


1992 ◽  
Vol 128 ◽  
pp. 86-89
Author(s):  
W. Kundt

AbstractControversial interpretations of the functioning and evolution of (radio) pulsars are discussed and confronted with the constraints. It is argued that (i) polarized e± bunches are ejected from near the polar caps at high Lorentz factors γ ≳ 102, that (ii) coherent radio pulses are emitted by them during transit to the outer magnetosphere via curvature radiation, (iii) in the shape of (transverse) fan beams, that (iv) there is no indication of magnetic field decay (or buildup), and that (v) pulsars die either by alignment or by interstellar quenching.The so-called “millisecond” pulsars (outside globular clusters) are likely to be an abundant, young population of fast-born pulsars.


1967 ◽  
Vol 31 ◽  
pp. 381-383
Author(s):  
J. M. Greenberg

Van de Hulst (Paper 64, Table 1) has marked optical polarization as a questionable or marginal source of information concerning magnetic field strengths. Rather than arguing about this–I should rate this method asq+-, or quarrelling about the term ‘model-sensitive results’, I wish to stress the historical point that as recently as two years ago there were still some who questioned that optical polarization was definitely due to magnetically-oriented interstellar particles.


1967 ◽  
Vol 31 ◽  
pp. 375-380
Author(s):  
H. C. van de Hulst

Various methods of observing the galactic magnetic field are reviewed, and their results summarized. There is fair agreement about the direction of the magnetic field in the solar neighbourhood:l= 50° to 80°; the strength of the field in the disk is of the order of 10-5gauss.


1967 ◽  
Vol 31 ◽  
pp. 355-356
Author(s):  
R. D. Davies

Observations at various frequencies between 136 and 1400 MHz indicate a considerable amount of structure in the galactic disk. This result appears consistent both with measured polarization percentages and with considerations of the strength of the galactic magnetic field.


Sign in / Sign up

Export Citation Format

Share Document