scholarly journals A real-time, all-sky, high time resolution, direct imager for the long wavelength array

2019 ◽  
Vol 486 (4) ◽  
pp. 5052-5060 ◽  
Author(s):  
James Kent ◽  
Jayce Dowell ◽  
Adam Beardsley ◽  
Nithyanandan Thyagarajan ◽  
Greg Taylor ◽  
...  
2017 ◽  
Vol 13 (S337) ◽  
pp. 29-32
Author(s):  
Timothy H. Hankins

AbstractThe high time resolution afforded by coherent dedispersion has enabled precision pulsar timing, detailed studies of pulsar morphology, and has led to conclusions about the radio emission mechanism. The advance of technology in the last 50 years has enhanced the capability of coherent dedispersion, now used for most pulsar observing, by nearly six orders of magnitude. Although coherent dedispersion is now done mostly in software, in “earlier days” several novel hardware devices for real-time processing were developed.


2011 ◽  
Vol 11 (5) ◽  
pp. 539-546 ◽  
Author(s):  
Gayle S.W. Hagler ◽  
Tiffany L.B. Yelverton ◽  
Ram Vedantham ◽  
Anthony D.A. Hansen ◽  
Jay R. Turner

2017 ◽  
Vol 13 (S337) ◽  
pp. 422-423
Author(s):  
C. R. H. Walker ◽  
R. P. Breton ◽  
P. A. Harrison ◽  
A. Holloway ◽  
M. J. Keith ◽  
...  

AbstractThe majority of fast radio bursts (FRBs) are poorly localised, hindering their potential scientific yield as galactic, intergalactic, and cosmological probes. LOFT-e, a digital backend for the U.K.’s e-MERLIN seven-telescope interferometer will provide commensal search and real-time detection of FRBs, taking full advantage of its field of view (FoV), sensitivity, and observation time. Upon burst detection, LOFT-e will store raw data offline, enabling the sub-arcsecond localisation provided by e-MERLIN and expanding the pool of localised FRBs. The high-time resolution backend will additionally introduce pulsar observing capabilities to e-MERLIN.


1994 ◽  
Vol 144 ◽  
pp. 431-434
Author(s):  
M. Minarovjech ◽  
M. Rybanský

AbstractThis paper deals with a possibility to use the ground-based method of observation in order to solve basic problems connected with the solar corona research. Namely:1.heating of the solar corona2.course of the global cycle in the corona3.rotation of the solar corona and development of active regions.There is stressed a possibility of high-time resolution of the coronal line photometer at Lomnický Peak coronal station, and use of the latter to obtain crucial observations.


2010 ◽  
Vol 180 (4) ◽  
pp. 424 ◽  
Author(s):  
G.M. Beskin ◽  
S.V. Karpov ◽  
S.F. Bondar ◽  
V.L. Plokhotnichenko ◽  
A. Guarnieri ◽  
...  

APL Photonics ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 036114
Author(s):  
J. Chang ◽  
J. W. N. Los ◽  
J. O. Tenorio-Pearl ◽  
N. Noordzij ◽  
R. Gourgues ◽  
...  

2021 ◽  
Vol 772 ◽  
pp. 144766
Author(s):  
Lingling Lv ◽  
Yingjun Chen ◽  
Yong Han ◽  
Min Cui ◽  
Peng Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document