scholarly journals Post-processing Method to Reduce Noise while Preserving High Time Resolution in Aethalometer Real-time Black Carbon Data

2011 ◽  
Vol 11 (5) ◽  
pp. 539-546 ◽  
Author(s):  
Gayle S.W. Hagler ◽  
Tiffany L.B. Yelverton ◽  
Ram Vedantham ◽  
Anthony D.A. Hansen ◽  
Jay R. Turner
2019 ◽  
Vol 486 (4) ◽  
pp. 5052-5060 ◽  
Author(s):  
James Kent ◽  
Jayce Dowell ◽  
Adam Beardsley ◽  
Nithyanandan Thyagarajan ◽  
Greg Taylor ◽  
...  

2017 ◽  
Vol 13 (S337) ◽  
pp. 29-32
Author(s):  
Timothy H. Hankins

AbstractThe high time resolution afforded by coherent dedispersion has enabled precision pulsar timing, detailed studies of pulsar morphology, and has led to conclusions about the radio emission mechanism. The advance of technology in the last 50 years has enhanced the capability of coherent dedispersion, now used for most pulsar observing, by nearly six orders of magnitude. Although coherent dedispersion is now done mostly in software, in “earlier days” several novel hardware devices for real-time processing were developed.


2020 ◽  
Vol 13 (8) ◽  
pp. 4333-4351
Author(s):  
Martin Rigler ◽  
Luka Drinovec ◽  
Gašper Lavrič ◽  
Athanasia Vlachou ◽  
André S. H. Prévôt ◽  
...  

Abstract. We present a newly developed total carbon analyzer (TCA08) and a method for online speciation of carbonaceous aerosol with a high time resolution. The total carbon content is determined by flash heating of a sample collected on a quartz-fiber filter with a time base between 20 min and 24 h. The limit of detection is approximately 0.3 µg C, which corresponds to a concentration of 0.3 µg C m−3 at a sample flow rate of 16.7 L min−1 and a 1 h sampling time base. The concentration of particulate equivalent organic carbon (OC) is determined by subtracting black carbon concentration, concurrently measured optically by an Aethalometer®, from the total carbon concentration measured by the TCA08. The combination of the TCA08 and Aethalometer (AE33) is an easy-to-deploy and low-maintenance continuous measurement technique for the high-time-resolution determination of equivalent organic and elemental carbon (EC) in different particulate matter size fractions, which avoids pyrolytic correction and the need for high-purity compressed gases. The performance of this online method relative to the standardized off-line thermo-optical OC–EC method and respective instruments was evaluated during a winter field campaign at an urban background location in Ljubljana, Slovenia. The organic-matter-to-organic-carbon ratio obtained from the comparison with an aerosol chemical speciation monitor (ACSM) was OM/OC=1.8, in the expected range.


2017 ◽  
Vol 13 (S337) ◽  
pp. 422-423
Author(s):  
C. R. H. Walker ◽  
R. P. Breton ◽  
P. A. Harrison ◽  
A. Holloway ◽  
M. J. Keith ◽  
...  

AbstractThe majority of fast radio bursts (FRBs) are poorly localised, hindering their potential scientific yield as galactic, intergalactic, and cosmological probes. LOFT-e, a digital backend for the U.K.’s e-MERLIN seven-telescope interferometer will provide commensal search and real-time detection of FRBs, taking full advantage of its field of view (FoV), sensitivity, and observation time. Upon burst detection, LOFT-e will store raw data offline, enabling the sub-arcsecond localisation provided by e-MERLIN and expanding the pool of localised FRBs. The high-time resolution backend will additionally introduce pulsar observing capabilities to e-MERLIN.


1994 ◽  
Vol 144 ◽  
pp. 431-434
Author(s):  
M. Minarovjech ◽  
M. Rybanský

AbstractThis paper deals with a possibility to use the ground-based method of observation in order to solve basic problems connected with the solar corona research. Namely:1.heating of the solar corona2.course of the global cycle in the corona3.rotation of the solar corona and development of active regions.There is stressed a possibility of high-time resolution of the coronal line photometer at Lomnický Peak coronal station, and use of the latter to obtain crucial observations.


2010 ◽  
Vol 180 (4) ◽  
pp. 424 ◽  
Author(s):  
G.M. Beskin ◽  
S.V. Karpov ◽  
S.F. Bondar ◽  
V.L. Plokhotnichenko ◽  
A. Guarnieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document