scholarly journals Timing of young radio pulsars – I. Timing noise, periodic modulation, and proper motion

2019 ◽  
Vol 489 (3) ◽  
pp. 3810-3826 ◽  
Author(s):  
A Parthasarathy ◽  
R M Shannon ◽  
S Johnston ◽  
L Lentati ◽  
M Bailes ◽  
...  

ABSTRACT The smooth spin-down of young pulsars is perturbed by two non-deterministic phenomenon, glitches, and timing noise. Although the timing noise provides insights into nuclear and plasma physics at extreme densities, it acts as a barrier to high-precision pulsar timing experiments. An improved methodology based on the Bayesian inference is developed to simultaneously model the stochastic and deterministic parameters for a sample of 85 high-$\dot{E}$ radio pulsars observed for ∼10 yr with the 64-m Parkes radio telescope. Timing noise is known to be a red process and we develop a parametrization based on the red-noise amplitude (Ared) and spectral index (β). We measure the median Ared to be $-10.4^{+1.8}_{-1.7}$ yr3/2 and β to be $-5.2^{+3.0}_{-3.8}$ and show that the strength of timing noise scales proportionally to $\nu ^{1}|\dot{\nu }|^{-0.6\pm 0.1}$, where ν is the spin frequency of the pulsar and $\dot{\nu }$ is its spin-down rate. Finally, we measure significant braking indices for 19 pulsars and proper motions for 2 pulsars, and discuss the presence of periodic modulation in the arrival times of 5 pulsars.

2020 ◽  
Vol 494 (2) ◽  
pp. 2012-2026 ◽  
Author(s):  
A Parthasarathy ◽  
S Johnston ◽  
R M Shannon ◽  
L Lentati ◽  
M Bailes ◽  
...  

ABSTRACT In Paper I of this series, we detected a significant value of the braking index (n) for 19 young, high-$\dot{E}$ radio pulsars using ∼10 yr of timing observations from the 64-m Parkes radio telescope. Here, we investigate this result in more detail using a Bayesian pulsar timing framework to model timing noise and to perform selection to distinguish between models containing exponential glitch recovery and braking index signatures. We show that consistent values of n are maintained with the addition of substantial archival data, even in the presence of glitches. We provide strong arguments that our measurements are unlikely due to exponential recovery signals from unseen glitches even though glitches play a key role in the evolution of a pulsar’s spin frequency. We conclude that, at least over decadal time-scales, the value of n can be significantly larger than the canonical 3 and discuss the implications for the evolution of pulsars.


2012 ◽  
Vol 8 (S291) ◽  
pp. 561-561
Author(s):  
Yi Xie ◽  
Shuangnan Zhang

AbstractWe model the evolution of the magnetic fields of neutron stars as consisting of a long term power-law decay modulated by short term small amplitude oscillations. Our model predictions on the timing noise of neutron stars agree well with the observed statistical properties and correlations of normal radio pulsars. For individual pulsars our model can effectively reduce their timing residuals, thus offering the potential of more sensitive detections of gravitational waves with pulsar timing arrays. Finally our model can also re-produce their observed correlation and oscillations of second derivative of frenquency, as well as the “slow glitch” phenomenon.


2020 ◽  
Vol 494 (1) ◽  
pp. 228-245 ◽  
Author(s):  
M E Lower ◽  
M Bailes ◽  
R M Shannon ◽  
S Johnston ◽  
C Flynn ◽  
...  

ABSTRACT While pulsars possess exceptional rotational stability, large-scale timing studies have revealed at least two distinct types of irregularities in their rotation: red timing noise and glitches. Using modern Bayesian techniques, we investigated the timing noise properties of 300 bright southern-sky radio pulsars that have been observed over 1.0–4.8 yr by the upgraded Molonglo Observatory Synthesis Telescope (MOST). We reanalysed the spin and spin-down changes associated with nine previously reported pulsar glitches, report the discovery of three new glitches and four unusual glitch-like events in the rotational evolution of PSR J1825−0935. We develop a refined Bayesian framework for determining how red noise strength scales with pulsar spin frequency (ν) and spin-down frequency ($\dot{\nu }$), which we apply to a sample of 280 non-recycled pulsars. With this new method and a simple power-law scaling relation, we show that red noise strength scales across the non-recycled pulsar population as $\nu ^{a} |\dot{\nu }|^{b}$, where $a = -0.84^{+0.47}_{-0.49}$ and $b = 0.97^{+0.16}_{-0.19}$. This method can be easily adapted to utilize more complex, astrophysically motivated red noise models. Lastly, we highlight our timing of the double neutron star PSR J0737−3039, and the rediscovery of a bright radio pulsar originally found during the first Molonglo pulsar surveys with an incorrectly catalogued position.


2019 ◽  
Vol 487 (4) ◽  
pp. 5854-5861 ◽  
Author(s):  
Nakornping Namkham ◽  
Phrudth Jaroenjittichai ◽  
Simon Johnston

ABSTRACT Radio pulsars are often used as clocks in a wide variety of experiments. Imperfections in the clock, known as timing noise, have the potential to reduce the significance of, or even thwart e.g. the attempt to find a stochastic gravitational wave (GW) background. We measure the timing noise in a group of 129 mostly middle-aged pulsars (i.e. characteristic ages near 1 Myr) observed with the Parkes radio telescope on a monthly basis since 2014. We examine four different metrics for timing noise, but it remains unclear which, if any, provides the best determination. In spite of this, it is evident that these pulsars have significantly less timing noise than their younger counterparts, but significantly more than the (much older) millisecond pulsars (MSPs). As with previous authors, we find a strong correlation between timing noise and the pulsar spin-down rate, $\dot{\nu}$. However, for a given $\dot{\nu}$ there is a spread of about a factor of 30 in the strength of the timing noise likely indicating that nuclear conditions in the interior of the stars differ between objects. We briefly comment on the implications for GW detection through pulsar timing arrays as the level of timing noise in MSPs may be less than predicted.


2018 ◽  
Vol 619 ◽  
pp. A78 ◽  
Author(s):  
D. J. Lennon ◽  
C. J. Evans ◽  
R. P. van der Marel ◽  
J. Anderson ◽  
I. Platais ◽  
...  

A previous spectroscopic study identified the very massive O2 III star VFTS 16 in the Tarantula Nebula as a runaway star based on its peculiar line-of-sight velocity. We use the Gaia DR2 catalog to measure the relative proper motion of VFTS 16 and nearby bright stars to test if this star might have been ejected from the central cluster, R136, via dynamical ejection. We find that the position angle and magnitude of the relative proper motion (0.338±0.046 mas yr−1, or approximately 80±11 km s−1) of VFTS 16 are consistent with ejection from R136 approximately 1.5±0.2 Myr ago, very soon after the cluster was formed. There is some tension with the presumed age of VFTS 16 that, from published stellar parameters, cannot be greater than 0.9+0.3−0.2 Myr. Older ages for this star would appear to be prohibited due to the absence of He I lines in its optical spectrum, since this sets a firm lower limit on its effective temperature. The dynamical constraints may imply an unusual evolutionary history for this object, perhaps indicating it is a merger product. Gaia DR2 also confirms that another very massive star in the Tarantula Nebula, VFTS 72 (alias BI 253; O2 III-V(n)((f*)), is also a runaway on the basis of its proper motion as measured by Gaia. While its tangential proper motion (0.392±0.062 mas yr−1 or 93±15 km s−1) would be consistent with dynamical ejection from R136 approximately 1 Myr ago, its position angle is discrepant with this direction at the 2σ level. From their Gaia DR2 proper motions we conclude that the two ∼100 M⊙ O2 stars, VFTS 16 and VFTS 72, are fast runaway stars, with space velocities of around 100 km s−1 relative to R136 and the local massive star population. The dynamics of VFTS 16 are consistent with it having been ejected from R136, and this star therefore sets a robust lower limit on the age of the central cluster of ∼1.3 Myr.


2007 ◽  
Vol 3 (S245) ◽  
pp. 351-354
Author(s):  
Katherine Vieira ◽  
Dana Cassetti-Dinescu ◽  
René A. Méndez ◽  
R. Michael Rich ◽  
Terrence M. Girard ◽  
...  

AbstractA proper motion study of a field of 20′ × 20′ inside Plaut's low extinction window (l,b)=(0o, −8o), has been completed. Relative proper motions and photographicBVphotometry have been derived for ~ 21,000 stars reaching toV~ 20.5 mag, based on the astrometric reduction of 43 photographic plates, spanning over 21 years of epoch difference. Proper motion errors are typically 1 mas yr−1. Cross-referencing with the 2MASS catalog yielded a sample of ~ 8700 stars, from which predominantly disk and bulge subsamples were selected photometrically from theJHcolor-magnitude diagram. The two samples exhibited different proper-motion distributions, with the disk displaying the expected reflex solar motion. Galactic rotation was also detected for stars between ~2 and ~3 kpc from us. The bulge sample, represented by red giants, has an intrinsic proper motion dispersion of (σl, σb) = (3.39, 2.91)±(0.11, 0.09) mas yr−1, which is in good agreement with previous results. A mean distance of$6.37^{+0.87}_{-0.77}$kpc has been estimated for the bulge sample, based on the observedKmagnitude of the horizontal branch red clump. The metallicity [M/H] distribution was also obtained for a subsample of 60 bulge giants stars, based on calibrated photometric indices. The observed [M/H] shows a peak value at [M/H] ~ −0.1 with an extended metal poor tail and around 30% of the stars with supersolar metallicity. No change in proper motion dispersion was observed as a function of [M/H]. We are currently in the process of obtaining CCDUBV RIphotometry for the entire proper-motion sample of ~ 21,000 stars.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 367-369
Author(s):  
Lawrence Teitelbaum ◽  
Walid Majid ◽  
Manuel M. Franco ◽  
Daniel J. Hoppe ◽  
Shinji Horiuchi ◽  
...  

AbstractMillisecond pulsars (MSPs) are a class of radio pulsars with extremely stable rotation. Their excellent timing stability can be used to study a wide variety of astrophysical phenomena. In particular, a large sample of these pulsars can be used to detect low-frequency gravitational waves. We have developed a precision pulsar timing backend for the NASA Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to time pulses from an ensemble of MSPs. The DSN operates clusters of large dish antennas (up to 70-m in diameter), located roughly equidistant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations over the next few years.


1998 ◽  
Vol 179 ◽  
pp. 384-385 ◽  
Author(s):  
C.-L Lu ◽  
I. Platais ◽  
T.M. Girard ◽  
V. Kozhurina-Platais ◽  
W.F. Van Altena ◽  
...  

We attempted to quantify the magnitude-dependent systematics in a sample of Schmidt plates by comparison to positions from the Yale/San Juan Southern Proper Motion program which offers star positions and absolute proper motions down to B = 18 with a mean density of about 50 stars per square degree and a positional accuracy of 0.1″ (Platais et al. 1995).


Sign in / Sign up

Export Citation Format

Share Document