scholarly journals Red and dead CANDELS: massive passive galaxies at the dawn of the Universe

2019 ◽  
Vol 490 (3) ◽  
pp. 3309-3328 ◽  
Author(s):  
E Merlin ◽  
F Fortuni ◽  
M Torelli ◽  
P Santini ◽  
M Castellano ◽  
...  

ABSTRACT We search the five CANDELS fields (COSMOS, EGS, GOODS-North, GOODS-South, and UDS) for passively evolving a.k.a. ‘red and dead’ massive galaxies in the first 2 Gyr after the big bang, integrating and updating the work on GOODS-South presented in a previous paper. We perform SED-fitting on photometric data, with top-hat star-formation histories to model an early and abrupt quenching, and using a probabilistic approach to select only robust candidates. Using libraries without (with) spectral lines emission, starting from a total of more than 20 000 z > 3 sources we end up with 102 (40) candidates, including one at z = 6.7. This implies a minimal number density of 1.73 ± 0.17 × 10−5 (6.69 ± 1.08 × 10−6) Mpc−3 for 3 < z < 5; applying a correction factor to account for incompleteness yields 2.30 ± 0.20 × 10−5. We compare these values with those from five recent hydrodynamical cosmological simulations, finding a reasonable agreement at z < 4; tensions arise at earlier epochs. Finally, we use the star-formation histories from the best-fitting models to estimate the contribution of the high-redshift passive galaxies to the global star formation rate density during their phase of activity, finding that they account for ∼5–10 per cent of the total star formation at 3 < z < 8, despite being only $\sim 0.5{{\ \rm per\ cent}}$ of the total in number. The resulting picture is that early and strong star formation activity, building massive galaxies on short time-scales and followed by a quick and abrupt quenching, is a rare but crucial phenomenon in the early Universe: the evolution of the cosmos must be heavily influenced by the short but powerful activity of these pristine monsters.

2019 ◽  
Vol 15 (S341) ◽  
pp. 226-230
Author(s):  
Christian Binggeli ◽  
Erik Zackrisson ◽  
Xiangcheng Ma ◽  
Akio K. Inoue ◽  
Anton Vikaeus ◽  
...  

AbstractRecently, spectroscopic detections of O[III] 88 μm and Ly-α emission lines from the z ≍ 9.1 galaxy MACS1149-JD1 have been presented, and with these, some interesting properties of this galaxy were uncovered. One such property is that MACS1149-JD1 exhibits a significant Balmer break at around rest-frame 4000 Å, which may indicate that the galaxy has experienced large variations in star formation rate prior to z ∼ 9, with a rather long period of low star formation activity. While some simulations predict large variations in star formation activity in high-redshift galaxies, it is unclear whether the simulations can reproduce the kind of variations seen in MACS1149-JD1. Here, we utilize synthetic spectra of simulated galaxies from two simulation suites in order to study to what extent these can accurately reproduce the spectral features (specifically the Balmer break) observed in MACS1149-JD1. We show that while the simulations used in this study produce galaxies with varying star formation histories, galaxies such as MACS1149-JD1 would be very rare in the simulations. In principle, future observations with the James Webb Space Telescope may tell us if MACS1149-JD1 represents something rare, or if such galaxies are more common than predicted by current simulations.


2009 ◽  
Vol 5 (S265) ◽  
pp. 171-178
Author(s):  
Fred Hamann ◽  
Leah E. Simon

AbstractHigh-redshift quasars provide a unique glimpse into the early evolution of massive galaxies. The physical processes that trigger major bursts of star formation in quasar host galaxies (mergers and interactions) probably also funnel gas into the central regions to grow the super-massive black holes (SMBHs) and ignite the luminous quasar phenomenon. The globally dense environments where this occurs were probably also among the first to collapse and manufacture stars in significant numbers after the big bang. Measurements of the elemental abundances near quasars place important constraints on the nature, timing and extent of this star formation. A variety of studies using independent emission and absorption line diagnostics have shown that quasar environments have gas-phase metallicities that are typically a few times solar at all observed redshifts. These results are consistent with galaxy evolution scenarios in which large amounts of star formation (e.g., in the central regions) precede the visibly bright quasar phase. An observed trend for higher metallicities in more luminmous quasars (powered by more massive SMBHs) is probably tied to the well-known mass–metallicity relation among ordinary galaxies. This correlation and the absence of a trend with redshift indicate that mass is a more important parameter in the evolution than the time elapsed since the big bang.


Science ◽  
2018 ◽  
Vol 361 (6406) ◽  
pp. 1016-1019 ◽  
Author(s):  
J. S. Spilker ◽  
M. Aravena ◽  
M. Béthermin ◽  
S. C. Chapman ◽  
C.-C. Chen ◽  
...  

Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.


2019 ◽  
Vol 15 (S352) ◽  
pp. 194-198
Author(s):  
Christina C. Williams

AbstractWe discuss the serendipitous discovery of a dusty high-redshift galaxy in a small (8 arcmin2) ALMA 3-mm survey Williams et al. (2019). The galaxy was previously unknown and is absent from existing multi-wavelength catalogs (“ALMA-only”). Using the ALMA position as prior, we perform forced deblended photometry to constrain its spectral energy distribution. The spectral energy distribution is well described by a massive (M* = 1010.8 M⊙) and highly obscured (AV ∼ 4) galaxy at redshift z = 5.5 ± 1.1 with star formation rate ∼ 300 M⊙yr−1. Our small survey area implies an uncertain but large contribution to the cosmic star formation rate density, similar to the contribution from all ultraviolet-selected galaxies combined at this redshift. This galaxy likely traces an abundant population of massive galaxies absent from current samples of infrared-selected or sub-millimeter galaxies, but with larger space densities, higher duty cycles, and significant contribution to the cosmic star-formation rate and stellar mass densities.


2012 ◽  
Vol 10 (H16) ◽  
pp. 128-128
Author(s):  
Jamie R. Ownsworth ◽  
Christopher J. Conselice ◽  
Alice Mortlock ◽  
William G. Hartley ◽  
Fernando Buitrago

We investigate the resolved star formation properties of a sample of 45 massive galaxies (M* > 1011 M⊙) within a redshift range of 1.5 ⩽ z ⩽ 3 detected in the GOODS NICMOS Survey (Conselice et al. 2011), a HST H160-band imaging program. We derive the star formation rate as a function of radius using rest frame UV data from deep z850 ACS imaging. The star formation present at high redshift is then extrapolated to z = 0, and we examine the stellar mass produced in individual regions within each galaxy. We also construct new stellar mass profiles of the in situ stellar mass at high redshift from Sérsic fits to rest-frame optical, H160-band, data. We combine the two stellar mass profiles to produce an evolved stellar mass profile. We then fit a new Sérsic profile to the evolved profile, from which we examine what effect the resulting stellar mass distribution added via star formation has on the structure and size of each individual galaxy.


2019 ◽  
Vol 489 (1) ◽  
pp. 1265-1290 ◽  
Author(s):  
Chiara Mancini ◽  
Emanuele Daddi ◽  
Stéphanie Juneau ◽  
Alvio Renzini ◽  
Giulia Rodighiero ◽  
...  

ABSTRACT We investigate the nature of star-forming galaxies with reduced specific star formation rate (sSFR) and high stellar masses, those ‘green valley’ objects that seemingly cause a reported bending, or flattening, of the star-forming main sequence. The fact that such objects host large bulges recently led some to suggest that the internal formation of bulges was a late event that induced the sSFRs of massive galaxies to drop in a slow downfall, and thus the main sequence to bend. We have studied in detail a sample of 10 galaxies at 0.45 &lt; z &lt; 1 with secure SFR from Herschel, deep Keck optical spectroscopy, and HST imaging from CANDELS allowing us to perform multiwavelength bulge to disc decomposition, and to derive star formation histories for the separated bulge and disc components. We find that the bulges hosted in these systems below main sequence are virtually all maximally old, with ages approaching the age of the Universe at the time of observation, while discs are young (〈 T50〉 ∼ 1.5 Gyr). We conclude that, at least based on our sample, the bending of the main sequence is, for a major part, due to rejuvenation, and we disfavour mechanisms that postulate the internal formation of bulges at late times. The very old stellar ages of our bulges suggest a number density of early-type galaxies at z = 1–3 higher than actually observed. If confirmed, this might represent one of the first direct validations of hierarchical assembly of bulges at high redshifts.


2016 ◽  
Vol 11 (S321) ◽  
pp. 327-329 ◽  
Author(s):  
Sandro Tacchella ◽  
C. Marcella Carollo ◽  
Avishai Dekel ◽  
Natascha Förster Schreiber ◽  
Alvio Renzini ◽  
...  

AbstractIn order to constrain – and understand – the growth of galaxies, we present a sample of ~ 30 galaxies at z ~ 2 with resolved distribution of stellar mass, star-formation rate, and dust attenuation on scales of ~ 1 kpc. We find that low- and intermediate-mass galaxies grow self-similarly, doubling their stellar mass in the centers and outskirts with the same pace. More massive galaxies (~ 1011 M⊙) have a reduced star-formation activity in their center: they grow mostly in the outskirts (inside-out quenching / formation). Similar trends are find in cosmological zoom-in simulations, highlighting that high stellar mass densities are formed in a gas-rich compaction phase. This nuclear ‘starburst’ phase is followed by a suppressed star-formation activity in the center, resulting in growth of the outskirts. All in all, we put forward that we witness at z ~ 2 the dissipative formation of z = 0 M* early-type galaxies.


Author(s):  
José A Flores Velázquez ◽  
Alexander B Gurvich ◽  
Claude-André Faucher-Giguére ◽  
James S Bullock ◽  
Tjitske K Starkenburg ◽  
...  

Abstract Understanding the rate at which stars form is central to studies of galaxy formation. Observationally, the star formation rates (SFRs) of galaxies are measured using the luminosity in different frequency bands, often under the assumption of a time-steady SFR in the recent past. We use star formation histories (SFHs) extracted from cosmological simulations of star-forming galaxies from the FIRE project to analyze the time-scales to which the Hα and far-ultraviolet (FUV) continuum SFR indicators are sensitive. In these simulations, the SFRs are highly time variable for all galaxies at high redshift, and continue to be bursty to z = 0 in dwarf galaxies. When FIRE SFHs are partitioned into their bursty and time-steady phases, the best-fitting FUV time-scale fluctuates from its ∼10 Myr value when the SFR is time-steady to ≳100 Myr immediately following particularly extreme bursts of star formation during the bursty phase. On the other hand, the best-fitting averaging time-scale for Hα is generally insensitive to the SFR variability in the FIRE simulations and remains ∼ 5 Myr at all times. These time-scales are shorter than the 100 Myr and 10 Myr time-scales sometimes assumed in the literature for FUV and Hα, respectively, because while the FUV emission persists for stellar populations older than 100 Myr, the time-dependent luminosities are strongly dominated by younger stars. Our results confirm that the ratio of SFRs inferred using Hα vs. FUV can be used to probe the burstiness of star formation in galaxies.


2020 ◽  
Vol 499 (4) ◽  
pp. 5241-5256
Author(s):  
Cheng Cheng ◽  
Edo Ibar ◽  
Ian Smail ◽  
Juan Molina ◽  
David Sobral ◽  
...  

ABSTRACT We present Atacama Large Millimeter/Submillimeter Array (ALMA) continuum observations of a sample of nine star-forming galaxies at redshifts 1.47 and 2.23 selected from the High-z Emission Line Survey (HiZELS). Four galaxies in our sample are detected at high significance by ALMA at a resolution of 0${_{.}^{\prime\prime}}$25 at rest-frame 355 μm. Together with the previously observed H α emission, from adaptive optics-assisted integral-field-unit spectroscopy (∼0${_{.}^{\prime\prime}}$15 resolution), and F606W and F140W imaging from the Hubble Space Telescope (∼0${_{.}^{\prime\prime}}$2 resolution), we study the star formation activity, stellar and dust mass in these high-redshift galaxies at ∼kpc-scale resolution. We find that ALMA detection rates are higher for more massive galaxies (M* &gt; 1010.5 M⊙) and higher [N ii]/H α ratios (&gt;0.25, a proxy for gas-phase metallicity). The dust extends out to a radius of 8 kpc, with a smooth structure, even for those galaxies presenting clumpy H α morphologies. The half-light radii (Rdust) derived for the detected galaxies are of the order ∼4.5 kpc, more than twice the size of submillimetre-selected galaxies at a similar redshift. Our global star formation rate estimates – from far-infrared and extinction-corrected H α luminosities – are in good agreement. However, the different morphologies of the different phases of the interstellar medium suggest complex extinction properties of the high-redshift normal galaxies.


2015 ◽  
Vol 11 (S319) ◽  
pp. 88-91
Author(s):  
Miroslava Dessauges-Zavadsky ◽  
Michel Zamojski ◽  
Daniel Schaerer ◽  
Françoise Combes ◽  
Eiichi Egami ◽  
...  

AbstractRecent CO surveys of star-forming galaxies (SFGs) at z ~ 2 have revolutionized our picture of massive galaxies. It is time to expand these studies toward the more common z ~ 2 SFGs with SFR < 40 M⊙ yr−1 and M* < 2.5 × 1010 M⊙. We have derived molecular gas, stars, and dust in 8 such lensed SFGs. They extend the LIR–L'CO(1-0) distribution of massive z>1 SFGs and increase the spread of the SFG star formation efficiency (SFE). A single star formation relation is found when combining all existing CO-detected galaxies. Our low-M* SFGs also reveal a SFE decrease with M* as found locally. A rise of the molecular gas fraction (fgas) with redshift is observed up to z ~ 1.6, but it severely flattens toward higher redshifts. We provide the first insight into the fgas upturn at the low-M* end 109.4 < M*/M⊙ < 1010 reaching fgas ~ 0.7, it is followed by a fgas decrease toward higher M*. Finally, we find a non-universal dust-to-gas ratio among local and high-redshift SFGs and starbursts with near-solar metallicities.


Sign in / Sign up

Export Citation Format

Share Document