scholarly journals Magnetic energy dissipation and origin of non-thermal spectra in radiatively efficient relativistic sources

2019 ◽  
Vol 491 (3) ◽  
pp. 3900-3907 ◽  
Author(s):  
E Sobacchi ◽  
Y E Lyubarsky

ABSTRACT The dissipation of turbulent magnetic fields is an appealing scenario to explain the origin of non-thermal particles in high-energy astrophysical sources. However, it has been suggested that the particle distribution may effectively thermalize when the radiative (synchrotron and/or Inverse Compton) losses are severe. Inspired by recent particle-in-cell simulations of relativistic turbulence, which show that electrons are impulsively heated in intermittent current sheets by a strong electric field aligned with the local magnetic field, we instead argue that in plasmas where the particle number density is dominated by the pairs (electron–positron and electron–positron–ion plasmas): (i) as an effect of fast cooling and of different injection times, the electron energy distribution is dne/dγ ∝ γ−2 for γ ≲ γheat (the Lorentz factor γheat being close to the equipartition value), while the distribution steepens at higher energies; (ii) since the time-scales for the turbulent fields to decay and for the photons to escape are of the same order, the magnetic and the radiation energy densities in the dissipation region are comparable; (iii) if the mass energy of the plasma is dominated by the ion component, the pairs with a Lorentz factor smaller than a critical one (of the order of the proton-to-electron mass ratio) become isotropic, while the pitch angle remains small otherwise. The outlined scenario is consistent with the typical conditions required to reproduce the spectral energy distribution of blazars, and allows one to estimate the magnetization of the emission site. Finally, we show that turbulence within the Crab Nebula may power the observed gamma-ray flares if the pulsar wind is nearly charge separated at high latitudes.

2017 ◽  
Vol 606 ◽  
pp. A59 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

Very high-energy γ rays (VHE, E ≳ 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE γ rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5σ, and the intensity of the EBL obtained in different spectral bands is presented together with the associated γ-ray horizon.


2020 ◽  
Vol 636 ◽  
pp. A55 ◽  
Author(s):  
M. Ronchi ◽  
F. Fumagalli ◽  
M. E. Ravasio ◽  
G. Oganesyan ◽  
M. Toffano ◽  
...  

The gamma-ray burst (GRB) 180720B is one of the brightest events detected by the Fermi satellite and the first GRB detected by the H.E.S.S. telescope above 100 GeV, at around ten hours after the trigger time. We analysed the Fermi (GBM and LAT) and Swift (XRT and BAT) data and describe the evolution of the burst spectral energy distribution in the 0.5 keV–10 GeV energy range over the first 500 s of emission. We reveal a smooth transition from the prompt phase, dominated by synchrotron emission in a moderately fast cooling regime, to the afterglow phase whose emission has been observed from the radio to the gigaelectronvolts energy range. The LAT (0.1–100 GeV) light curve initially rises (FLAT ∝ t2.4), peaks at ∼78 s, and falls steeply (FLAT ∝ t−2.2) afterwards. The peak, which we interpret as the onset of the fireball deceleration, allows us to estimate the bulk Lorentz factor Γ0 ∼ 150 (300) under the assumption of a circum-burst medium with a wind-like (homogeneous) density profile. We derive a flux upper limit in the LAT energy range at the time of H.E.S.S. detection, but this does not allow us to unveil the nature of the high-energy component observed by H.E.S.S. We fit the prompt spectrum with a physical model of synchrotron emission from a non-thermal population of electrons. The 0–35 s spectrum after its EF(E) peak (at 1–2 MeV) is a steep power law extending to hundreds of megaelectronvolts. We derive a steep slope of the injected electron energy distribution N(γ) ∝ γ−5. Our fit parameters point towards a very low magnetic field (B′ ∼ 1 G) in the emission region.


2019 ◽  
Vol 627 ◽  
pp. A72 ◽  
Author(s):  
G. Ghisellini ◽  
M. Perri ◽  
L. Costamante ◽  
G. Tagliaferri ◽  
T. Sbarrato ◽  
...  

We observed three blazars at z >  2 with the NuSTAR satellite. These were detected in the γ-rays by Fermi/LAT and in the soft X-rays, but have not yet been observed above 10 keV. The flux and slope of their X-ray continuum, together with Fermi/LAT data allows us to estimate their total electromagnetic output and peak frequency. For some of them we were able to study the source in different states, and investigate the main cause of the different observed spectral energy distribution. We then collected all blazars at redshifts greater than 2 observed by NuSTAR, and confirm that these hard and luminous X-ray blazars are among the most powerful persistent sources in the Universe. We confirm the relation between the jet power and the disk luminosity, extending it at the high-energy end.


2019 ◽  
Vol 624 ◽  
pp. A142 ◽  
Author(s):  
C. Ferrigno ◽  
E. Bozzo ◽  
A. Sanna ◽  
G. K. Jaisawal ◽  
J. M. Girard ◽  
...  

The object IGR J17503–2636 is a hard X-ray transient discovered by INTEGRAL on 2018 August 11. This was the first ever reported X-ray emission from this source. Following the discovery, follow-up observations were carried out with Swift, Chandra, NICER, and NuSTAR. Here we report on the analysis of all of these X-ray data and the results obtained. Based on the fast variability in the X-ray domain, the spectral energy distribution in the 0.5–80 keV energy range, and the reported association with a highly reddened OB supergiant at ∼10 kpc, we conclude that IGR J17503–2636 is most likely a relatively faint new member of the supergiant fast X-ray transients. Spectral analysis of the NuSTAR data revealed a broad feature in addition to the typical power-law with exponential roll-over at high energy. This can be modeled either in emission or as a cyclotron scattering feature in absorption. If confirmed by future observations, this feature would indicate that IGR J17503–2636 hosts a strongly magnetized neutron star with B ∼ 2 × 1012 G.


2018 ◽  
Vol 620 ◽  
pp. A41
Author(s):  
T. Vuillaume ◽  
G. Henri ◽  
P.-O. Petrucci

Context. High-energy emission of extragalactic objects is known to take place in relativistic jets, but the nature, the location, and the emission processes of the emitting particles are still unknown. One of the models proposed to explain the formation of relativistic ejections and their associated non-thermal emission is the two-flow model, where the jets are supposed to be composed of two different flows, a mildly relativistic baryonic jet surrounding a fast, relativistically moving electron positron plasma. Here we present the simulation of the emission of such a structure taking into account the main sources of photons that are present in active galactic nuclei (AGNs). Aims. We try to reproduce the broadband spectra of radio-loud AGNs with a detailed model of emission taking into account synchrotron and inverse-Compton emission by a relativistically moving beam of electron positron, heated by a surrounding turbulent baryonic jet. Methods. We compute the density and energy distribution of a relativistic pair plasma all along a jet, taking into account the synchrotron and inverse-Compton process on the various photon sources present in the core of the AGN, as well as the pair creation and annihilation processes. We use semi-analytical approximations to quickly compute the inverse-Compton process on a thermal photon distribution with any anisotropic angular distribution. The anisotropy of the photon field is also responsible for the bulk acceleration of the pair plasma through the “Compton rocket” effect, thus imposing the plasma velocity along the jet. As an example, the simulated emerging spectrum is compared to the broadband emission of 3C 273. Results. In the case of 3C 273, we obtain an excellent fit of the average broadband energy distribution by assuming physical parameters compatible with known estimates. The asymptotic bulk Lorentz factor is lower than what is observed by superluminal motion, but the discrepancy could be solved by assuming different acceleration profiles along the jet.


2017 ◽  
Vol 606 ◽  
pp. A68 ◽  
Author(s):  
M. Cerruti ◽  
W. Benbow ◽  
X. Chen ◽  
J. P. Dumm ◽  
L. F. Fortson ◽  
...  

Context. The current generation of ground-based Cherenkov telescopes, together with the LAT instrument on-board the Fermi satellite, have greatly increased our knowledge of γ-ray blazars. Among them, the high-frequency-peaked BL Lacertae object (HBL) PKS 1424+240 (z ≃ 0.6) is the farthest persistent emitter of very-high-energy (VHE; E ≥ 100 GeV) γ-ray photons. Current emission models can satisfactorily reproduce typical blazar emission assuming that the dominant emission process is synchrotron-self-Compton (SSC) in HBLs; and external-inverse-Compton (EIC) in low-frequency-peaked BL Lacertae objects and flat-spectrum-radio-quasars. Alternatively, hadronic models are also able to correctly reproduce the γ-ray emission from blazars, although they are in general disfavored for bright quasars and rapid flares. Aims. The blazar PKS 1424+240 is a rare example of a luminous HBL, and we aim to determine which is the emission process most likely responsible for its γ-ray emission. This will impact more generally our comprehension of blazar emission models, and how they are related to the luminosity of the source and the peak frequency of the spectral energy distribution. Methods. We have investigated different blazar emission models applied to the spectral energy distribution of PKS 1424+240. Among leptonic models, we study a one-zone SSC model (including a systematic study of the parameter space), a two-zone SSC model, and an EIC model. We then investigated a blazar hadronic model, and finally a scenario in which the γ-ray emission is associated with cascades in the line-of-sight produced by cosmic rays from the source. Results. After a systematic study of the parameter space of the one-zone SSC model, we conclude that this scenario is not compatible with γ-ray observations of PKS 1424+240. A two-zone SSC scenario can alleviate this issue, as well as an EIC solution. For the latter, the external photon field is assumed to be the infra-red radiation from the dusty torus, otherwise the VHE γ-ray emission would have been significantly absorbed. Alternatively, hadronic models can satisfactorily reproduce the γ-ray emission from PKS 1424+240, both as in-source emission and as cascade emission.


1999 ◽  
Vol 193 ◽  
pp. 592-593 ◽  
Author(s):  
Miguel Cerviño ◽  
J. Miguel Mas-Hesse

We present in this contribution the predictions on the multiwavelength spectral energy distribution of our evolutionary population synthesis models including single and binary stellar systems. The high energy computations include the emission associated to X-ray binaries and supernovae remnants, as well as the mechanical energy released into the interstellar medium, which can be partially reprocessed into thermal X-rays. With these components we compute the spectral energy distribution of starburst galaxies from X-ray to radio ranges, and analyze finally the effects of the high energy emission on the H and He ionizing continuum.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844007
Author(s):  
S. Gasparyan ◽  
N. Sahakyan ◽  
P. Chardonnet

The discovery of very-high-energy gamma-ray emission from Flat Spectrum Radio Quasars (FSRQs) by ground-based Cherenkov telescopes (HESS, MAGIC, VERITAS) provides a new view of blazar emission processes. The available data from multiwavelength observations of FSRQs, allow us to constrain the size (possibly also location) of the emitting region, magnetic field, electron energy distribution, etc., which are crucial for the understanding of the jet properties. We investigate the origin of emission from FSRQs (PKS 1510-089, PKS 1222+216 and 3C 279) by modeling the broadband spectral energy distribution in their quiescent and flaring states, using estimation of the parameter space that describes the underlying particle distribution responsible for the emission through the Markov Chain Monte Carlo (MCMC) technique.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012013
Author(s):  
A Eungwanichayapant ◽  
W Luangtip

Abstract Interactions between Very High Energy (VHE) gamma-rays from Active Galactic Nuclei (AGNs) and infrared photons from the Extragalactic Background Light (EBL) can start electromagnetic cascades. If the extragalactic magnetic field near a host galaxy is strong enough (∼1 µG), the cascades would develop isotropically around the AGN. As a result, the electron/positron pairs created along the development of the cascades would create an X-ray halo via synchrotron radiation process. It is believed that the VHE gamma-ray spectra from the AGNs could be approximated by a power-law model which is truncated at high energy end (i.e. maximum energy). In this work we studied the X-ray Spectral Energy Distribution (SED) of the halo generated from the AGN spectra with different power indices and maximum energy levels. The results showed that the SEDs were slightly higher and broader, as they were obtaining higher flux if the power indices were lower. On the other hand, the SEDs were sensitive to the maximum energy levels between 100-300 TeV. More flux could be obtained from the higher maximum energy. However, we found that the SED becomes insensitive to the varied parameters when the maximum energy and the power index are > 500 TeV and < 1.5, respectively.


Sign in / Sign up

Export Citation Format

Share Document