scholarly journals I–Love–Q relations for realistic white dwarfs

2019 ◽  
Vol 492 (1) ◽  
pp. 978-992 ◽  
Author(s):  
Andrew J Taylor ◽  
Kent Yagi ◽  
Phil L Arras

ABSTRACT The space-borne gravitational wave interferometer, Laser Interferometer Space Antenna, is expected to detect signals from numerous binary white dwarfs. At small orbital separation, rapid rotation and large tidal bulges may allow for the stellar internal structure to be probed through such observations. Finite-size effects are encoded in quantities like the moment of inertia (I), tidal Love number (Love), and quadrupole moment (Q). The universal relations among them (I–Love–Q relations) can be used to reduce the number of parameters in the gravitational-wave templates. We here study I–Love–Q relations for more realistic white dwarf models than used in previous studies. In particular, we extend previous works by including (i) differential rotation and (ii) internal temperature profiles taken from detailed stellar evolution calculations. We use the publicly available stellar evolution code mesa to generate cooling models of both low- and high-mass white dwarfs. We show that differential rotation causes the I–Q relation (and similarly the Love–Q relation) to deviate from that of constant rotation. We also find that the introduction of finite temperatures causes the white dwarf to move along the zero-temperature mass sequence of I–Q values, moving towards values that suggest a lower mass. We further find that after only a few Myr, high-mass white dwarfs are well described by the zero-temperature model, suggesting that the relations with zero temperature may be good enough in most practical cases. Low-mass, He-core white dwarfs with thick hydrogen envelopes may undergo long periods of H burning which sustain the stellar temperature and allow deviations from the I–Love–Q relations for longer times.

Author(s):  
Adrian G. Abac ◽  
Jose Perico H. Esguerra ◽  
Roland Emerito S. Otadoy

The generalized uncertainty principle (GUP) is a common feature among several approaches related to quantum gravity. An approach to GUP was recently developed that contains both linear and quadratic terms of momenta, from which an infinitesimal phase space volume was derived up to the linear term of momenta. We studied the effects of this linear GUP approach on the structure equations and mass–radius relation of zero-temperature white dwarfs. We formulated a linear GUP-modified Chandrasekhar equation of state (EoS) by deriving exact forms of the thermodynamic properties of ideal Fermi gases. This was then used to obtain the analytical form of the modified Newtonian structure equations for the white dwarfs. By imposing a constraint on the momenta of the particles in the white dwarf due to linear GUP, the structure equations were solved and the modified mass–radius relation of the white dwarfs were obtained. This was then extended in the context of general relativity (GR), which, like linear GUP, affects white dwarfs significantly in the high-mass regime. We found that linear GUP displays a similar overall effect as in GR — linear GUP supports gravitational collapse of the white dwarf, by decreasing its limiting (maximum) mass and increasing its corresponding limiting (minimum radius). We also found that GUP effects become evident only at large values of the GUP parameter, but these values are still within the estimated bounds. This effect gets more prominent as we increase the as-of-yet unestablished value of the parameter.


Author(s):  
Nils Andersson

This chapter introduces the different classes of compact objects—white dwarfs, neutron stars, and black holes—that are relevant for gravitational-wave astronomy. The ideas are placed in the context of developing an understanding of the likely endpoint(s) of stellar evolution. Key ideas like Fermi gases and the Chandrasekhar mass are discussed, as is the emergence of general relativity as a cornerstone of astrophysics in the 1950s. Issues associated with different formation channels for, in particular, black holes are considered. The chapter ends with a discussion of the supermassive black holes that are found at the centre of galaxies.


2019 ◽  
Vol 15 (S357) ◽  
pp. 188-191
Author(s):  
Ted von Hippel ◽  
Adam Moss ◽  
Isabelle Kloc ◽  
Natalie Moticska ◽  
Jimmy Sargent ◽  
...  

AbstractWe employ Pan-STARRS photometry, Gaia trigonometric parallaxes, modern stellar evolution and atmosphere models, and our Bayesian fitting approach to determine cooling and total ages for 159,238 white dwarfs. In many cases we are able to derive precise ages (better than 5%) for individual white dwarfs. These results are meant for broad use within the white dwarf and stellar astrophysics communities and we plan to make available on-line the posterior distributions for cooling age, total age, initial stellar mass, and other parameters.


1990 ◽  
Vol 122 ◽  
pp. 313-324
Author(s):  
Hans Ritter

AbstractIn this paper we explore to what extent the TNR model of nova outbursts and our current concepts of the formation and secular evolution of cataclysmic binaries are compatible. Specifically we address the following questions: 1) whether observational selection can explain the high white dwarf masses attributed to novae, 2) whether novae on white dwarfs in the mass range 0.6M⊙ ≲ M ≲ 0.9M⊙ can occur and how much they could contribute to the observed nova frequency, and 3) whether the high mass transfer rates imposed on the white dwarf in systems above the period gap can be accommodated by the TNR model of nova outbursts.


1989 ◽  
Vol 114 ◽  
pp. 97-108 ◽  
Author(s):  
Steven D. Kawaler ◽  
Carl J. Hansen

The variable white dwarfs repeatedly force theory to conform to their observed properties so that further progress can be made in understanding the structure and evolution of all white dwarfs. We use the term “understanding” in a loose sense here because, as we will show, both observational constraints and interpretation of the observations vis-à-vis theory contribute to uncertainties in our understanding at this time. In any case, recent progress in this field (sometimes called white dwarf seismology) has provided some fascinating insights into the evolutionary and structural properties of white dwarfs and their progenitors. This short review is our attempt to describe recent progress made in the interaction of theory with observations.


1993 ◽  
Vol 139 ◽  
pp. 116-116
Author(s):  
P.A. Bradley ◽  
M.A. Wood

AbstractWe present the results of a parametric survey of evolutionary models of compositionally stratified white dwarfs with helium surface layers (DB white dwarfs). Because white dwarfs are the most common final end state of stellar evolution, determining their internal structure will offer us many clues about stellar evolution, the physics of matter under extreme conditions, plus the history of star formation and age of the local Galactic disk. As a first step towards determining the internal structure of DB white dwarf stars, we provide a comprehensive set of theoretical g-mode pulsation periods for comparison to observations.Because DB white dwarfs have a layered structure consisting of a helium layer overlying the carbon/oxygen core, some modes will have the same wavelength as the thickness of the helium layer, allowing a resonance to form. This resonance is called mode trapping (see Brassard et al. 1992 and references therein) and has directly observable consequences, because modes at or near the resonance have eigenfunctions and pulsation periods that are similar to each other. This results in much smaller period spacings between consecutive overtone modes of the same spherical harmonic index than the uniform period spacings seen between non-trapped modes. We demonstrate with an example how one can use the distribution of pulsation periods to determine the total stellar mass, the mass of the helium surface layer, and the extent of the helium/carbon and carbon/oxygen transition zones. With these tools, we have the prospect of being able to determine the structure of the observed DBV white dwarfs, once the requisite observations become available.We are grateful to C.J. Hansen, S.D. Kawaler, R.E. Nather, and D.E. Winget for their encouragement and many discussions. This research was supported by the National Science Foundation under grants 85-52457 and 90-14655 through the University of Texas and McDonald Observatory.


2021 ◽  
Vol 651 ◽  
pp. L12
Author(s):  
Brett M. Morris ◽  
Kevin Heng ◽  
Alexis Brandeker ◽  
Andrew Swan ◽  
Monika Lendl

White dwarf spectroscopy shows that nearly half of white dwarf atmospheres contain metals that must have been accreted from planetary material that survived the red giant phases of stellar evolution. We can use metal pollution in white dwarf atmospheres as flags, signalling recent accretion, in order to prioritize an efficient sample of white dwarfs to search for transiting material. We present a search for planetesimals orbiting six nearby white dwarfs with the CHaracterising ExOPlanet Satellite (CHEOPS). The targets are relatively faint for CHEOPS, 11 mag < G < 12.8 mag. We used aperture photometry data products from the CHEOPS mission as well as custom point-spread function photometry to search for periodic variations in flux due to transiting planetesimals. We detect no significant variations in flux that cannot be attributed to spacecraft systematics, despite reaching a photometric precision of < 2 ppt in 60 s exposures on each target. We simulate observations to show that the small survey is sensitive primarily to Moon-sized transiting objects with periods between 3 h < P < 10 h, with radii of R ≳ 1000 km.


1979 ◽  
Vol 53 ◽  
pp. 188-191
Author(s):  
Francesca D’Antona

Current theory of stellar evolution predicts that stars of initial masses up to 4-6 M⊙ evolve into Carbon-Oxygen White Dwarfs surrounded by a Helium envelope and, possibly, by a Hydrogen envelope. It also predicts that the mass of the Helium envelope which remains on the star at the end of its double shell burning evolution is a function of the Carbon-Oxygen core mass (Paczynski 1975). It can be shown that this mass can be reduced – but only slightly – during the following evolution of the star towards the White Dwarf region, either by nuclear burning or by mass loss (D’Antona and Mazzitelli 1979). During the White Dwarf stage, Helium convection grows into White Dwarfs having Helium atmospheres. The maximum extension of Helium convective mass is a function of the mass of the star (Fontaine and Van Horn 1976; D’Antona and Mazzitelli 1975,1979). It turns out that the Helium envelope remnant mass is always at least three orders of magnitude larger than the maximum Helium convective mass, whatever the mass of the star may be. This statement is unlikely to be changed by refinements either in the theory of double shell burning or in the theory of White Dwarf envelope convection.


1987 ◽  
Vol 122 ◽  
pp. 463-464
Author(s):  
Amos Harpaz ◽  
Attay Kovetz ◽  
Giora Shaviv

The effects of using different treatments of the surface boundary conditions are investigated in the context of the mass of He White Dwarfs. We find that since the White Dwarf progenitor is a star with a very extended atmosphere, the results are sensitive to the degree of accuracy implemented in the handling of the boundary conditions.


1989 ◽  
Vol 114 ◽  
pp. 1-14 ◽  
Author(s):  
Volker Weidemann ◽  
Jie W. Yuan

Ever since Graham’s Strömgren photometry (1972) demonstrated the existence of a single well defined cooling sequence of DA white dwarfs the question of the mass dispersion (or the width of the number-mass distribution) has been in the foreground of my studies (Weidemann, 1970, 1977).Indeed it turned out that the shape of the white dwarf mass distribution provides strong constraints on the theory of stellar evolution with mass loss, a fact which will be demonstrated again in the following lecture. It therefore seems worthwhile to dwell in some detail on the methods of its determination. For the benefit of the non-specialists I shall first present some of the historical results and then continue to discuss the present situation.


Sign in / Sign up

Export Citation Format

Share Document