scholarly journals A fast radio burst with frequency-dependent polarization detected during Breakthrough Listen observations

2019 ◽  
Vol 486 (3) ◽  
pp. 3636-3646 ◽  
Author(s):  
D C Price ◽  
G Foster ◽  
M Geyer ◽  
W van Straten ◽  
V Gajjar ◽  
...  

ABSTRACT Here, we report on the detection and verification of fast radio burst FRB 180301, which occurred on utc 2018 March 1 during the Breakthrough Listen observations with the Parkes telescope. Full-polarization voltage data of the detection were captured – a first for non-repeating FRBs – allowing for coherent de-dispersion and additional verification tests. The coherently de-dispersed dynamic spectrum of FRB 180301 shows complex, polarized frequency structure over a small fractional bandwidth. As FRB 180301 was detected close to the geosynchronous satellite band during a time of known 1–2 GHz satellite transmissions, we consider whether the burst was due to radio interference emitted or reflected from an orbiting object. Based on the pre-ponderance of our verification tests, we cannot conclusively determine FRB 180301 to be either astrophysical or anthropogenic in origin.

Nature ◽  
2020 ◽  
Vol 587 (7832) ◽  
pp. 43-44
Author(s):  
Amanda Weltman ◽  
Anthony Walters
Keyword(s):  

Nature ◽  
2020 ◽  
Vol 582 (7812) ◽  
pp. 322-323 ◽  
Author(s):  
Alexandra Witze

2018 ◽  
Vol 2018 (16) ◽  
pp. 224-1-224-5
Author(s):  
Stephen Itschner ◽  
Kevin Bandura ◽  
Xin Li

2021 ◽  
Vol 503 (4) ◽  
pp. 5223-5231
Author(s):  
C F Zhang ◽  
J W Xu ◽  
Y P Men ◽  
X H Deng ◽  
Heng Xu ◽  
...  

ABSTRACT In this paper, we investigate the impact of correlated noise on fast radio burst (FRB) searching. We found that (1) the correlated noise significantly increases the false alarm probability; (2) the signal-to-noise ratios (S/N) of the false positives become higher; (3) the correlated noise also affects the pulse width distribution of false positives, and there will be more false positives with wider pulse width. We use 55-h observation for M82 galaxy carried out at Nanshan 26m radio telescope to demonstrate the application of the correlated noise modelling. The number of candidates and parameter distribution of the false positives can be reproduced with the modelling of correlated noise. We will also discuss a low S/N candidate detected in the observation, for which we demonstrate the method to evaluate the false alarm probability in the presence of correlated noise. Possible origins of the candidate are discussed, where two possible pictures, an M82-harboured giant pulse and a cosmological FRB, are both compatible with the observation.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 76
Author(s):  
Luciano Nicastro ◽  
Cristiano Guidorzi ◽  
Eliana Palazzi ◽  
Luca Zampieri ◽  
Massimo Turatto ◽  
...  

The origin and phenomenology of the Fast Radio Burst (FRB) remains unknown despite more than a decade of efforts. Though several models have been proposed to explain the observed data, none is able to explain alone the variety of events so far recorded. The leading models consider magnetars as potential FRB sources. The recent detection of FRBs from the galactic magnetar SGR J1935+2154 seems to support them. Still, emission duration and energetic budget challenge all these models. Like for other classes of objects initially detected in a single band, it appeared clear that any solution to the FRB enigma could only come from a coordinated observational and theoretical effort in an as wide as possible energy band. In particular, the detection and localisation of optical/NIR or/and high-energy counterparts seemed an unavoidable starting point that could shed light on the FRB physics. Multiwavelength (MWL) search campaigns were conducted for several FRBs, in particular for repeaters. Here we summarize the observational and theoretical results and the perspectives in view of the several new sources accurately localised that will likely be identified by various radio facilities worldwide. We conclude that more dedicated MWL campaigns sensitive to the millisecond–minute timescale transients are needed to address the various aspects involved in the identification of FRB counterparts. Dedicated instrumentation could be one of the key points in this respect. In the optical/NIR band, fast photometry looks to be the only viable strategy. Additionally, small/medium size radiotelescopes co-pointing higher energies telescopes look a very interesting and cheap complementary observational strategy.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Mukul Bhattacharya ◽  
Pawan Kumar ◽  
Eric V. Linder

2018 ◽  
Vol 2 (11) ◽  
pp. 865-872 ◽  
Author(s):  
E. F. Keane

Author(s):  
E Petroff ◽  
L C Oostrum ◽  
B W Stappers ◽  
M Bailes ◽  
E D Barr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document