scholarly journals Not so fast: LB-1 is unlikely to contain a 70 M⊙ black hole

2020 ◽  
Vol 493 (1) ◽  
pp. L22-L27 ◽  
Author(s):  
Kareem El-Badry ◽  
Eliot Quataert

ABSTRACT The recently discovered binary LB-1 has been reported to contain a ${\sim }70\, \mathrm{M}_{\odot}$ black hole (BH). The evidence for the unprecedentedly high mass of the unseen companion comes from reported radial velocity (RV) variability of the H α emission line, which has been proposed to originate from an accretion disc around a BH. We show that there is in fact no evidence for RV variability of the H α emission line, and that its apparent shifts instead originate from shifts in the luminous star’s H α absorption line. If not accounted for, such shifts will cause a stationary emission line to appear to shift in antiphase with the luminous star. We show that once the template spectrum of a B star is subtracted from the observed Keck/HIRES spectra of LB-1, evidence for RV variability vanishes. Indeed, the data rule out periodic variability of the line with velocity semi-amplitude $K_{\rm H\,\alpha } \gt 1.3\, {\rm {km}} \, s^{-1}$. This strongly suggests that the observed H α emission does not originate primarily from an accretion disc around a BH, and thus that the mass ratio cannot be constrained from the relative velocity amplitudes of the emission and absorption lines. The nature of the unseen companion remains uncertain, but a ‘normal’ stellar-mass BH with mass 5 ≲ M/M⊙ ≲ 20 seems most plausible. The H α emission likely originates primarily from circumbinary material, not from either component of the binary.

2022 ◽  
Vol 924 (2) ◽  
pp. 48
Author(s):  
Renuka Pechetti ◽  
Anil Seth ◽  
Sebastian Kamann ◽  
Nelson Caldwell ◽  
Jay Strader ◽  
...  

Abstract We investigate the presence of a central black hole (BH) in B023-G078, M31's most massive globular cluster. We present high-resolution, adaptive-optics assisted, integral-field spectroscopic kinematics from Gemini/NIFS that show a strong rotation (∼20 km s−1) and a velocity dispersion rise toward the center (37 km s−1). We combine the kinematic data with a mass model based on a two-component fit to HST ACS/HRC data of the cluster to estimate the mass of a putative BH. Our dynamical modeling suggests a >3σ detection of a BH component of 9.1 − 2.8 + 2.6 × 10 4 M ⊙ (1σ uncertainties). The inferred stellar mass of the cluster is 6.22 − 0.05 + 0.03 × 10 6 M ⊙ , consistent with previous estimates, thus the BH makes up 1.5% of its mass. We examine whether the observed kinematics are caused by a collection of stellar mass BHs by modeling an extended dark mass as a Plummer profile. The upper limit on the size scale of the extended mass is 0.56 pc (95% confidence), which does not rule out an extended mass. There is compelling evidence that B023-G078 is the tidally stripped nucleus of a galaxy with a stellar mass >109 M ⊙, including its high-mass, two-component luminosity profile, color, metallicity gradient, and spread in metallicity. Given the emerging evidence that the central BH occupation fraction of >109 M ⊙ galaxies is high, the most plausible interpretation of the kinematic data is that B023-G078 hosts a central BH. This makes it the strongest BH detection in a lower-mass (<107 M ⊙) stripped nucleus, and one of the few dynamically detected intermediate-mass BHs.


2019 ◽  
Vol 485 (3) ◽  
pp. 4413-4422 ◽  
Author(s):  
Daniel J D’Orazio ◽  
Abraham Loeb ◽  
James Guillochon

ABSTRACT The rate of tidal disruption flares (TDFs) per mass of the disrupting black hole encodes information on the present-day mass function (PDMF) of stars in the clusters surrounding super massive black holes. We explore how the shape of the TDF rate with black hole mass can constrain the PDMF, with only weak dependence on black hole spin. We show that existing data can marginally constrain the minimum and maximum masses of stars in the cluster, and the high-mass end of the PDMF slope, as well as the overall TDF rate. With $\mathcal {O}(100)$ TDFs expected to be identified with the Zwicky Transient Facility, the overall rate can be highly constrained, but still with only marginal constraints on the PDMF. However, if ${\lesssim } 10 {{\ \rm per\ cent}}$ of the TDFs expected to be found by LSST over a decade ($\mathcal {O}(10^3)$ TDFs) are identified, then precise and accurate estimates can be made for the minimum stellar mass (within a factor of 2) and the average slope of the high-mass PDMF (to within $\mathcal {O}(10{{\ \rm per\ cent}})$) in nuclear star clusters. This technique could be adapted in the future to probe, in addition to the PDMF, the local black hole mass function and possibly the massive black hole binary population.


2007 ◽  
Vol 16 (12a) ◽  
pp. 2319-2324 ◽  
Author(s):  
JAMES GRABER

LISA may make it possible to test the black-hole uniqueness theorems of general relativity, also called the no-hair theorems, by Ryan's method of detecting the quadrupole moment of a black hole using high-mass-ratio inspirals. This test can be performed more robustly by observing inspirals in earlier stages, where the simplifications used in making inspiral predictions by the perturbative and post-Newtonian methods are more nearly correct. Current concepts for future missions such as DECIGO and BBO would allow even more stringent tests by this same method. Recently discovered evidence supports the existence of intermediate-mass black holes (IMBHs). Inspirals of binary systems with one IMBH and one stellar-mass black hole would fall into the frequency band of proposed maximum sensitivity for DECIGO and BBO. This would enable us to perform the Ryan test more precisely and more robustly. We explain why tests based on observations earlier in the inspiral are more robust and provide preliminary estimates of possible optimal future observations.


2018 ◽  
Vol 14 (S346) ◽  
pp. 187-192
Author(s):  
S. Carpano ◽  
F. Haberl ◽  
P. Crowther ◽  
A. Pollock

Abstract. NGC 300 X-1 and IC 10 X-1 are currently the only two robust extragalactic candidates for being Wolf-Rayet/black hole X-ray binaries, the Galactic analogue being Cyg X-3. These systems are believed to be a late product of high-mass X-ray binary evolution and direct progenitors of black hole mergers. From the analysis of Swift data, the orbital period of NGC 300 X-1 was found to be 32.8 h. We here merge the full set of existing data of NGC 300 X-1, using XMM-Newton, Chandra and Swift observations to derive a more precise value of the orbital period of 32.7932 ± 0.0029 h above a confidence level of 99.99%. This allows us to phase connect the X-ray light curve of the source with radial velocity measurements of He II lines performed in 2010. We show that, as for IC 10 X-1 and Cyg X-3, the X-ray eclipse corresponds to maximum of the blueshift of the He II lines, instead of the expected zero velocity. This indicates that for NGC 300 X-1 as well, the wind of the WR star is completely ionised by the black hole radiation and that the emission lines come from the region of the WR star that is in the shadow. We also present for the first time the light curve of two recent very long XMM-Newton observations of the source, performed on the 16th to 20th of December 2016.


2019 ◽  
Vol 488 (1) ◽  
pp. 198-212 ◽  
Author(s):  
T Shahbaz ◽  
M Linares ◽  
P Rodríguez-Gil ◽  
J Casares

ABSTRACT We present time-resolved optical spectroscopy of the ‘redback’ binary millisecond pulsar system PSR J1023+0038 during both its radio pulsar (2009) and accretion disc states (2014 and 2016). We provide observational evidence for the companion star being heated during the disc state. We observe a spectral type change along the orbit, from ∼G5 to ∼F6 at the secondary star’s superior and inferior conjunction, respectively, and find that the corresponding irradiating luminosity can be powered by the high-energy accretion luminosity or the spin-down luminosity of the neutron star. We determine the secondary star’s radial velocity semi-amplitude from the metallic (primarily Fe and Ca) and Hα absorption lines during these different states. The metallic and Hα radial velocity semi-amplitude determined from the 2009 pulsar-state observations allows us to constrain the secondary star’s true radial velocity K2 = 276.3 ± 5.6  km s−1 and the binary mass ratio q = 0.137 ± 0.003. By comparing the observed metallic and Hα absorption-line radial velocity semi-amplitudes with model predictions, we can explain the observed semi-amplitude changes during the pulsar state and during the pulsar/disc-state transition as being due to different amounts of heating and the presence of an accretion disc, respectively.


2006 ◽  
Vol 2 (S238) ◽  
pp. 3-12 ◽  
Author(s):  
Jorge Casares

AbstractRadial velocity studies of X-ray binaries provide the most solid evidence for the existence of stellar-mass black holes. We currently have 20 confirmed cases, with dynamical masses in excess of 3 M⊙. Accurate masses have been obtained for a subset of systems which gives us a hint at the mass spectrum of the black hole population. This review summarizes the history of black hole discoveries and presents the latest results in the field.


2022 ◽  
Vol 924 (2) ◽  
pp. 56
Author(s):  
Alex Sicilia ◽  
Andrea Lapi ◽  
Lumen Boco ◽  
Mario Spera ◽  
Ugo N. Di Carlo ◽  
...  

Abstract This is the first paper in a series aimed at modeling the black hole (BH) mass function, from the stellar to the intermediate to the (super)massive regime. In the present work, we focus on stellar BHs and provide an ab initio computation of their mass function across cosmic times; we mainly consider the standard, and likely dominant, production channel of stellar-mass BHs constituted by isolated single/binary star evolution. Specifically, we exploit the state-of-the-art stellar and binary evolutionary code SEVN, and couple its outputs with redshift-dependent galaxy statistics and empirical scaling relations involving galaxy metallicity, star formation rate and stellar mass. The resulting relic mass function dN / dVd log m • as a function of the BH mass m • features a rather flat shape up to m • ≈ 50 M ⊙ and then a log-normal decline for larger masses, while its overall normalization at a given mass increases with decreasing redshift. We highlight the contribution to the local mass function from isolated stars evolving into BHs and from binary stellar systems ending up in single or binary BHs. We also include the distortion on the mass function induced by binary BH mergers, finding that it has a minor effect at the high-mass end. We estimate a local stellar BH relic mass density of ρ • ≈ 5 × 107 M ⊙ Mpc−3, which exceeds by more than two orders of magnitude that in supermassive BHs; this translates into an energy density parameter Ω• ≈ 4 × 10−4, implying that the total mass in stellar BHs amounts to ≲1% of the local baryonic matter. We show how our mass function for merging BH binaries compares with the recent estimates from gravitational wave observations by LIGO/Virgo, and discuss the possible implications for dynamical formation of BH binaries in dense environments like star clusters. We address the impact of adopting different binary stellar evolution codes (SEVN and COSMIC) on the mass function, and find the main differences to occur at the high-mass end, in connection with the numerical treatment of stellar binary evolution effects. We highlight that our results can provide a firm theoretical basis for a physically motivated light seed distribution at high redshift, to be implemented in semi-analytic and numerical models of BH formation and evolution. Finally, we stress that the present work can constitute a starting point to investigate the origin of heavy seeds and the growth of (super)massive BHs in high-redshift star-forming galaxies, that we will pursue in forthcoming papers.


2019 ◽  
Vol 490 (3) ◽  
pp. 3234-3261 ◽  
Author(s):  
Dylan Nelson ◽  
Annalisa Pillepich ◽  
Volker Springel ◽  
Rüdiger Pakmor ◽  
Rainer Weinberger ◽  
...  

Abstract We present the new TNG50 cosmological, magnetohydrodynamical simulation – the third and final volume of the IllustrisTNG project. This simulation occupies a unique combination of large volume and high resolution, with a 50 Mpc box sampled by 21603 gas cells (baryon mass of 8 × 104 M⊙). The median spatial resolution of star-forming interstellar medium gas is ∼100−140 pc. This resolution approaches or exceeds that of modern ‘zoom’ simulations of individual massive galaxies, while the volume contains ∼20 000 resolved galaxies with $M_\star \gtrsim 10^7$ M⊙. Herein we show first results from TNG50, focusing on galactic outflows driven by supernovae as well as supermassive black hole feedback. We find that the outflow mass loading is a non-monotonic function of galaxy stellar mass, turning over and rising rapidly above 1010.5 M⊙ due to the action of the central black hole (BH). The outflow velocity increases with stellar mass, and at fixed mass it is faster at higher redshift. The TNG model can produce high-velocity, multiphase outflows that include cool, dense components. These outflows reach speeds in excess of 3000 km s−1 out to 20 kpc with an ejective, BH-driven origin. Critically, we show how the relative simplicity of model inputs (and scalings) at the injection scale produces complex behaviour at galactic and halo scales. For example, despite isotropic wind launching, outflows exhibit natural collimation and an emergent bipolarity. Furthermore, galaxies above the star-forming main sequence drive faster outflows, although this correlation inverts at high mass with the onset of quenching, whereby low-luminosity, slowly accreting, massive BHs drive the strongest outflows.


Sign in / Sign up

Export Citation Format

Share Document