scholarly journals Dark matter distribution in X-ray luminous galaxy clusters with Emergent Gravity

2017 ◽  
Vol 470 (1) ◽  
pp. L29-L33 ◽  
Author(s):  
S. Ettori ◽  
V. Ghirardini ◽  
D. Eckert ◽  
F. Dubath ◽  
E. Pointecouteau
2019 ◽  
Vol 488 (3) ◽  
pp. 3646-3662 ◽  
Author(s):  
Andrew Robertson ◽  
David Harvey ◽  
Richard Massey ◽  
Vincent Eke ◽  
Ian G McCarthy ◽  
...  

ABSTRACT We present bahamas-SIDM, the first large-volume, $(400 \, h^{-1} \mathrm{\, Mpc})^{3}$, cosmological simulations including both self-interacting dark matter (SIDM) and baryonic physics. These simulations are important for two primary reasons: (1) they include the effects of baryons on the dark matter distribution and (2) the baryon particles can be used to make mock observables that can be compared directly with observations. As is well known, SIDM haloes are systematically less dense in their centres, and rounder, than CDM haloes. Here, we find that that these changes are not reflected in the distribution of gas or stars within galaxy clusters, or in their X-ray luminosities. However, gravitational lensing observables can discriminate between DM models, and we present a menu of tests that future surveys could use to measure the SIDM interaction strength. We ray-trace our simulated galaxy clusters to produce strong lensing maps. Including baryons boosts the lensing strength of clusters that produce no critical curves in SIDM-only simulations. Comparing the Einstein radii of our simulated clusters with those observed in the CLASH survey, we find that at velocities around $1000 \mathrm{\, km \, s^{-1}}$ an SIDM cross-section of $\sigma /m \gtrsim 1 \, \mathrm{cm^2 \, g^{-1}}$ is likely incompatible with observed cluster lensing.


2004 ◽  
Vol 604 (1) ◽  
pp. 88-107 ◽  
Author(s):  
David J. Sand ◽  
Tommaso Treu ◽  
Graham P. Smith ◽  
Richard S. Ellis

2009 ◽  
Vol 5 (H15) ◽  
pp. 89-90
Author(s):  
Takaya Ohashi

X-ray observations reveal extended halos around early-type galaxies which enable us to trace the dark matter distribution around the galaxies (see Mathews and Brighenti 2003 for a review). X-ray luminosities, LX of massive early-type galaxies are 1040−1042 erg s−1 in 0.3–2 keV. The correlation plot between LX and B-band luminosity LB shows a large scatter in the sense that LX varies by 2 orders of magnitudes for the same LB, in the brightest end (log LB ≳ 10.5). The amount of the X-ray hot gas in early-type galaxies is typically a few % of the stellar mass, in contrast to clusters of galaxies which hold ~5 times more massive gas than stars. Matsushita (2001) showed that X-ray luminous galaxies are characterized by extended X-ray halo with a few tens of re, similar to the scale of galaxy groups, so the presence of group-size potentials would be strongly linked with the problem of large LX scatter.


Author(s):  
Florence Durret ◽  
D. Gerbal ◽  
M. Lachièze-Rey ◽  
G. Lima-Neto ◽  
R. Sadat

1992 ◽  
Vol 258 (4) ◽  
pp. 738-748 ◽  
Author(s):  
M. P. Watt ◽  
T. J. Ponman ◽  
D. Bertram ◽  
C. J. Eyles ◽  
G. K. Skinner ◽  
...  

2009 ◽  
Vol 700 (2) ◽  
pp. 1603-1608 ◽  
Author(s):  
Teddy F. Frederiksen ◽  
Steen H. Hansen ◽  
Ole Host ◽  
Marco Roncadelli

2020 ◽  
Vol 497 (1) ◽  
pp. 52-66
Author(s):  
Yuchi Higuchi ◽  
Nobuhiro Okabe ◽  
Paola Merluzzi ◽  
Christopher Paul Haines ◽  
Giovanni Busarello ◽  
...  

ABSTRACT We present a 23 deg2 weak gravitational lensing survey of the Shapley supercluster core and its surroundings using gri VST images as part of the Shapley Supercluster Survey (ShaSS). This study reveals the overall matter distribution over a region containing 11 clusters at z ∼ 0.048 that are all interconnected, as well as several ongoing cluster–cluster interactions. Galaxy shapes have been measured by using the Kaiser–Squires–Broadhurst method for the g- and r-band images and background galaxies were selected via the gri colour–colour diagram. This technique has allowed us to detect all of the clusters, either in the g- or r-band images, although at different σ levels, indicating that the underlying dark matter distribution is tightly correlated with the number density of the member galaxies. The deeper r-band images have traced the five interacting clusters in the supercluster core as a single coherent structure, confirmed the presence of a filament extending North from the core, and have revealed a background cluster at z ∼ 0.17. We have measured the masses of the four richest clusters (A3556, A3558, A3560, and A3562) in the two-dimensional shear pattern, assuming a spherical Navarro–Frenk–White profile and obtaining a total mass of $\mathcal {M}_{\rm ShaSS,WL}{=}1.56^{+0.81}_{-0.55}{\times }10^{15\, }{\rm M}_{\odot }$, which is consistent with dynamical and X-ray studies. Our analysis provides further evidence of the ongoing dynamical evolution in the ShaSS region.


2005 ◽  
Vol 20 (14) ◽  
pp. 1021-1036 ◽  
Author(s):  
GIANFRANCO BERTONE ◽  
DAVID MERRITT

Non-baryonic, or "dark", matter is believed to be a major component of the total mass budget of the Universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.


Sign in / Sign up

Export Citation Format

Share Document