scholarly journals Regulation of Fas ligand expression by vascular endothelial growth factor in endometrial stromal cells in vitro

2004 ◽  
Vol 10 (6) ◽  
pp. 393-398 ◽  
Author(s):  
M. Berkkanoglu
2018 ◽  
Vol 60 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Yachao Zhang ◽  
Jieqiong Yang ◽  
Shijian Lv ◽  
Dong-Qin Zhao ◽  
Zi-Jiang Chen ◽  
...  

Preeclampsia (PE) is a pregnancy-induced disorder characterized by hypertension and proteinuria after 20 weeks of gestation, affecting 5–7% of pregnancies worldwide. So far, the etiology of PE remains poorly understood. Abnormal decidualization is thought to contribute to the development of PE. SP1 belongs to the Sp/KLF superfamily and can recruit P300 to regulate the transcription of several genes. SP1 is also very important for decidualization as it enhances the expression of tissue factor. In this study, we investigated the expression of SP1 and P300 in deciduae and their relationship with PE. A total of 42 decidua samples were collected, of which 21 were from normal pregnant (NP) and 21 from severe PE. SP1 and P300 expression in deciduae and the levels of SP1 and P300 in cultured human endometrial stromal cells (hESCs) and primary hESCs during decidualization were determined. To further investigate the role of SP1 and P300 in human decidualization, RNA interference was used to silence SP1 and P300 in hESCs and primary hESCs. The following results were obtained. We found that the expressions of SP1 and P300 were reduced in decidual tissues with PE compared to those from NP. In thein vitromodel of induction of decidualization, we found an increase in bothSP1andP300levels. Silencing ofSP1andP300resulted in abnormal decidualization and a significant reduction of decidualization markers such as insulin-like growth factor-binding protein1 and prolactin. Furthermore, the expression of vascular endothelial growth factor was also decreased uponSP1andP300silencing. Similar results were observed in primary hESCs. Our results suggest that SP1 and P300 play an important role during decidualization. Dysfunction of SP1 and P300 leads to impaired decidualization and might contribute to PE.


2010 ◽  
Vol 24 (1) ◽  
pp. 148-160 ◽  
Author(s):  
Neil Sidell ◽  
Yue Feng ◽  
Lijuan Hao ◽  
Juanjuan Wu ◽  
Jie Yu ◽  
...  

Abstract Vascular endothelial growth factor (VEGF) and endometrial angiogenesis play a critical role in successful embryonic implantation. Despite many studies of the effects of estrogen and progesterone on VEGF expression, its focal regulation at the site of implantation is unknown. Retinoic acid (RA) has been reported to regulate VEGF in a variety of cell types. Because localized RA synthesis occurs within the periimplantation endometrium, we tested the possibility that RA regulates VEGF production in endometrial stromal cells. Using primary and telomerase-immortalized human endometrial stromal cells, we determined that RA alone did not alter constitutive levels of VEGF production, but markedly amplified secretion when the cells were cotreated with activators of VEGF gene transcription (12-O-tetradecanoyl phorbol-13-acetate, TPA; TGF-β; and IL-1β). Whereas TPA or TGF-β alone stimulated VEGF promoter activity and up-regulated mRNA levels, significant protein secretion was detected only after RA was added to the culture systems. Analysis of retinoids in secretory phase endometrial biopsies indicated that endogenous RA accumulated at concentrations sufficient to induce VEGF secretion. Polyribosome profile analysis showed that the addition of RA to transcriptional activators of VEGF shifted the translational suppressed VEGF mRNA transcripts into larger polyribosome complexes engaged in active translation. Although the precise mechanism(s) of the RA effect remains to be defined, it appears to be mediated by reactive oxygen species; the antioxidant N-acetylcysteine inhibited RA+TPA-stimulated secretion of VEGF by more than 80%. Together, our results demonstrate that in human endometrial stromal cells, RA can combine with transcriptional activators of VEGF to augment VEGF secretion through a translational mechanism of action mediated by reactive oxygen species. These findings suggest a link between the spatiotemporal changes of retinoid synthesis in the periimplantation stroma and the capacity to quickly up-regulate focal VEGF secretion needed to induce early angiogenic events of pregnancy.


Sign in / Sign up

Export Citation Format

Share Document