scholarly journals Searching for and predicting the activity of sites for DNA binding proteins: compilation and analysis of the binding sites forEscherichia coliintegration host factor (IHF)

1990 ◽  
Vol 18 (17) ◽  
pp. 4993-5000 ◽  
Author(s):  
James A. Goodrich ◽  
Michael L. Schwartz ◽  
William R. McClure
2007 ◽  
Vol 36 (1) ◽  
pp. e8-e8 ◽  
Author(s):  
Jue Zeng ◽  
Jizhou Yan ◽  
Ting Wang ◽  
Deborah Mosbrook-Davis ◽  
Kyle T. Dolan ◽  
...  

2017 ◽  
Vol 28 (3) ◽  
pp. 364-369 ◽  
Author(s):  
Jason Brickner

Eukaryotic genomes are spatially organized within the nucleus by chromosome folding, interchromosomal contacts, and interaction with nuclear structures. This spatial organization is observed in diverse organisms and both reflects and contributes to gene expression and differentiation. This leads to the notion that the arrangement of the genome within the nucleus has been shaped and conserved through evolutionary processes and likely plays an adaptive function. Both DNA-binding proteins and changes in chromatin structure influence the positioning of genes and larger domains within the nucleus. This suggests that the spatial organization of the genome can be genetically encoded by binding sites for DNA-binding proteins and can also involve changes in chromatin structure, potentially through nongenetic mechanisms. Here I briefly discuss the results that support these ideas and their implications for how genomes encode spatial organization.


2016 ◽  
Vol 113 (14) ◽  
pp. 3826-3831 ◽  
Author(s):  
Payal Ray ◽  
Sandip De ◽  
Apratim Mitra ◽  
Karel Bezstarosti ◽  
Jeroen A. A. Demmers ◽  
...  

Polycomb group (PcG) proteins are responsible for maintaining the silenced transcriptional state of many developmentally regulated genes. PcG proteins are organized into multiprotein complexes that are recruited to DNA via cis-acting elements known as “Polycomb response elements” (PREs). In Drosophila, PREs consist of binding sites for many different DNA-binding proteins, some known and others unknown. Identification of these DNA-binding proteins is crucial to understanding the mechanism of PcG recruitment to PREs. We report here the identification of Combgap (Cg), a sequence-specific DNA-binding protein that is involved in recruitment of PcG proteins. Cg can bind directly to PREs via GTGT motifs and colocalizes with the PcG proteins Pleiohomeotic (Pho) and Polyhomeotic (Ph) at the majority of PREs in the genome. In addition, Cg colocalizes with Ph at a number of targets independent of Pho. Loss of Cg leads to decreased recruitment of Ph at only a subset of sites; some of these sites are binding sites for other Polycomb repressive complex 1 (PRC1) components, others are not. Our data suggest that Cg can recruit Ph in the absence of PRC1 and illustrate the diversity and redundancy of PcG protein recruitment mechanisms.


2013 ◽  
Vol 11 (01) ◽  
pp. 1340006 ◽  
Author(s):  
JAN GRAU ◽  
JENS KEILWAGEN ◽  
ANDRÉ GOHR ◽  
IVAN A. PAPONOV ◽  
STEFAN POSCH ◽  
...  

DNA-binding proteins are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in target regions of genomic DNA. However, de-novo discovery of these binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not yet been solved satisfactorily. Here, we present a detailed description and analysis of the de-novo motif discovery tool Dispom, which has been developed for finding binding sites of DNA-binding proteins that are differentially abundant in a set of target regions compared to a set of control regions. Two additional features of Dispom are its capability of modeling positional preferences of binding sites and adjusting the length of the motif in the learning process. Dispom yields an increased prediction accuracy compared to existing tools for de-novo motif discovery, suggesting that the combination of searching for differentially abundant motifs, inferring their positional distributions, and adjusting the motif lengths is beneficial for de-novo motif discovery. When applying Dispom to promoters of auxin-responsive genes and those of ABI3 target genes from Arabidopsis thaliana, we identify relevant binding motifs with pronounced positional distributions. These results suggest that learning motifs, their positional distributions, and their lengths by a discriminative learning principle may aid motif discovery from ChIP-chip and gene expression data. We make Dispom freely available as part of Jstacs, an open-source Java library that is tailored to statistical sequence analysis. To facilitate extensions of Dispom, we describe its implementation using Jstacs in this manuscript. In addition, we provide a stand-alone application of Dispom at http://www.jstacs.de/index.php/Dispom for instant use.


PLoS ONE ◽  
2009 ◽  
Vol 4 (8) ◽  
pp. e6736 ◽  
Author(s):  
Dana S. F. Homsi ◽  
Vineet Gupta ◽  
Gary D. Stormo

Sign in / Sign up

Export Citation Format

Share Document