scholarly journals Sequence of two isoforms of myosin light chain 2 isolated from a rabbit fast skeletal muscle lambda library

1990 ◽  
Vol 18 (22) ◽  
pp. 6687-6687 ◽  
Author(s):  
K. Maeda ◽  
E. Müller-Gerhardt ◽  
A. Wittinghofer
Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 919-929 ◽  
Author(s):  
A. Faerman ◽  
M. Shani

The fast skeletal muscle myosin light chain 2 (MLC2) gene is expressed specifically in skeletal muscles of newborn and adult mice, and has no detectable sequence homology with any of the other MLC genes including the slow cardiac MLC2 gene. The expression of the fast skeletal muscle MLC2 gene during early mouse embryogenesis was studied by in situ hybridization. Serial sections of embryos from 8.5 to 12.5 days post coitum (d.p.c.) were hybridized to MLC2 cRNA and to probes for the myogenic regulatory genes MyoD1 and myogenin. The results revealed different temporal and spatial patterns of hybridization for different muscle groups. MLC2 transcripts were first detected 9.5 d.p.c. in the myotomal regions of rostral somites, already expressing myogenin. Surprisingly, at the same stage, a weak MLC2 signal was also detected in the cardiomyocytes. The cardiac expression was transient and could not be detected at later stages while the myotomal signal persisted and spread to the more caudal somites, very similar to the expression of myogenin. Beginning from 10.5 d.p.c., several extramyotomal premuscle cells masses have been demarcated by MyoD1 expression. MLC2 transcripts were detected in only one of these cell masses. Although, transcripts of myogenin were detected in all these cell masses, the number of expressing cells was significantly lower than that observed for MyoD1. By 11.5 d.p.c., all three hybridization signals colocalized in most extramyotomal muscle-forming regions, with the exception of the diaphragm and the hindlimb buds, where only few cells expressed MLC2 and more cells expressed MyoD1 than myogenin. At 12.5 d.p.c., all three studied genes displayed a similar spatial pattern of expression in most muscle-forming regions. However, in some muscles, the MyoD1 signal spread over more cells compared to myogenin or MLC2. Our results are consistent with the suggestion that multiple myogenic programs exist for myoblasts differentiating in the myotome and extramyotomal regions.


1986 ◽  
Vol 6 (7) ◽  
pp. 655-661 ◽  
Author(s):  
John H. Collins ◽  
Janet L. Theibert ◽  
Luciano Dalla Libera

Many studies have established a correlation of differences in the activities of various muscle types with differences in the expression of myosin isoforms. In this paper we report the sequence determination of myosin light chain-2 from rabbit slow skeletal (LC2s) and ventricular (LC2v) nmscles. We sequenced tryptic peptides from LC2v which account for all except a few terminal amino acid residues. The major part (87 residues) of the rabbit LC2s sequence, obtained from tryptic and cyanogen bromide (CNBr) peptides, was found to be identical to rabbit LC2v. Our results provide the first sequence information on LC2s from any species, and lend strong support to the hypothesis that LC2s and LC2v are identical. Comparisons of rabbit LC2v and LC2s with rabbit LC2f (from fast skeletal muscle), and also with chicken LC2f and LC2v, show clearly that LC2s and LC2v from mammalian and avian species are more closely related to each other than they are to LC2f isoforms from the same species.


1985 ◽  
Vol 13 (13) ◽  
pp. 4623-4643 ◽  
Author(s):  
Philippe Daubas ◽  
Benoit Robert ◽  
Ian Garner ◽  
Margaret Buckingham

1991 ◽  
Vol 11 (3) ◽  
pp. 1676-1685 ◽  
Author(s):  
R A Shen ◽  
S K Goswami ◽  
E Mascareno ◽  
A Kumar ◽  
M A Siddiqui

Physiological expression of the cardiac muscle myosin light-chain 2 (MLC-2) gene in chickens is restricted to cardiac muscle tissue only, at least during the late embryonic to adult stages of development. The mechanism by which cardiac MLC-2 gene expression is repressed in differentiated noncardiac muscle tissues is unknown. Using sequential 5'-deletion mutants of the cardiac MLC-2 promoter introduced into primary skeletal muscle cells in culture, we have demonstrated that a 89-bp region, designated the cardiac-specific sequence (CSS), is essential for repression of cardiac MLC-2 expression in skeletal muscle. Removal of the CSS sequence alone allows transcription in skeletal muscle cells without affecting the transcriptional activity of the promoter in cardiac muscle cells. DNase I footprinting and gel shift assays indicate that protein binding to sequences in the CSS domain occurs readily in nuclear extracts obtained from skeletal muscle but not in extracts isolated under identical conditions from cardiac muscle. Thus, it appears that a negative regulatory mechanism accounts for the lack of expression of the cardiac MLC-2 gene in skeletal muscle and that the CSS element and its binding proteins are important functional components of the regulatory apparatus which ensures the developmental program for cardiac tissue-specific gene expression.


Sign in / Sign up

Export Citation Format

Share Document