mouse embryogenesis
Recently Published Documents


TOTAL DOCUMENTS

356
(FIVE YEARS 21)

H-INDEX

74
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jessica Kim ◽  
Masafumi Muraoka ◽  
Rieko Ajima ◽  
Hajime Okada ◽  
Atsushi Toyoda ◽  
...  

The evolutionarily conserved RNA helicase DDX6 is a central player of post-transcriptional regulation, but its role during embryogenesis remains elusive. We here demonstrated that DDX6 enables proper cell lineage specification from pluripotent cells by analyzing Ddx6 KO mouse embryos and in vitro epiblast-like cell (EpiLC) induction system. Our study unveiled a great impact of DDX6-mediated RNA regulation on signaling pathways. Deletion of Ddx6 caused the aberrant transcriptional upregulation of the negative regulators of BMP signaling, which accompanied with enhanced Nodal signaling. Ddx6 / pluripotent cells acquired higher pluripotency with a strong inclination toward neural lineage commitment. During gastrulation, abnormally expanded Nodal expression in the primitive streak likely promoted endoderm cell fate specification while inhibiting mesoderm development. We further clarified the mechanism how DDX6 regulates cell fate determination of pluripotent cells by genetically dissecting major DDX6 pathways: processing body (P-body) formation, translational repression, mRNA decay, and miRNA-mediated silencing. P-body-related functions were dispensable, but the miRNA pathway was essential for the DDX6 function. DDX6 may prevent aberrant transcriptional upregulation of the negative regulators of BMP signaling by repressing translation of certain transcription factors through the interaction with miRNA-induced silencing complexes (miRISCs). Overall, this delineates how DDX6 affects development of the three primary germ layers during early mouse embryogenesis and the underlying mechanism of DDX6 function.


Development ◽  
2021 ◽  
Vol 148 (18) ◽  
Author(s):  
Matthew J. Stower ◽  
Shankar Srinivas

ABSTRACT Live imaging is an important part of the developmental biologist's armoury of methods. In the case of the mouse embryo, recent advances in several disciplines including embryo culture, microscopy hardware and computational analysis have all contributed to our ability to probe dynamic events during early development. Together, these advances have provided us with a versatile and powerful ‘toolkit’, enabling us not only to image events during mouse embryogenesis, but also to intervene with them. In this short Spotlight article, we summarise advances and challenges in using live imaging specifically for understanding early mouse embryogenesis.


2021 ◽  
Vol 45 (7) ◽  
pp. 650-651
Author(s):  
Jason J. Han
Keyword(s):  

Author(s):  
Lucia A. Torres-Fernández ◽  
Jana Emich ◽  
Yasmine Port ◽  
Sibylle Mitschka ◽  
Marius Wöste ◽  
...  

Mutations affecting the germline can result in infertility or the generation of germ cell tumors (GCT), highlighting the need to identify and characterize the genes controlling germ cell development. The RNA-binding protein and E3 ubiquitin ligase TRIM71 is essential for embryogenesis, and its expression has been reported in GCT and adult mouse testes. To investigate the role of TRIM71 in mammalian germ cell embryonic development, we generated a germline-specific conditional Trim71 knockout mouse (cKO) using the early primordial germ cell (PGC) marker Nanos3 as a Cre-recombinase driver. cKO mice are infertile, with male mice displaying a Sertoli cell-only (SCO) phenotype which in humans is defined as a specific subtype of non-obstructive azoospermia characterized by the absence of germ cells in the seminiferous tubules. Infertility in male Trim71 cKO mice originates during embryogenesis, as the SCO phenotype was already apparent in neonatal mice. The in vitro differentiation of mouse embryonic stem cells (ESCs) into PGC-like cells (PGCLCs) revealed reduced numbers of PGCLCs in Trim71-deficient cells. Furthermore, TCam-2 cells, a human GCT-derived seminoma cell line which was used as an in vitro model for PGCs, showed proliferation defects upon TRIM71 knockdown. Additionally, in vitro growth competition assays, as well as proliferation assays with wild type and CRISPR/Cas9-generated TRIM71 mutant NCCIT cells showed that TRIM71 also promotes proliferation in this malignant GCT-derived non-seminoma cell line. Importantly, the PGC-specific markers BLIMP1 and NANOS3 were consistently downregulated in Trim71 KO PGCLCs, TRIM71 knockdown TCam-2 cells and TRIM71 mutant NCCIT cells. These data collectively support a role for TRIM71 in PGC development. Last, via exome sequencing analysis, we identified several TRIM71 variants in a cohort of infertile men, including a loss-of-function variant in a patient with an SCO phenotype. Altogether, our work reveals for the first time an association of TRIM71 deficiency with human male infertility, and uncovers further developmental roles for TRIM71 in the germline during mouse embryogenesis.


2021 ◽  
Vol 1868 (6) ◽  
pp. 119011
Author(s):  
Hsiang-Hsuan Fan ◽  
Kuo-Hong Lee ◽  
You-Tzung Chen ◽  
Li-Jyuan Lin ◽  
Tsung-Lin Yang ◽  
...  

Nature ◽  
2021 ◽  
Author(s):  
Alejandro Aguilera-Castrejon ◽  
Bernardo Oldak ◽  
Tom Shani ◽  
Nadir Ghanem ◽  
Chen Itzkovich ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Lucia A. Torres-Fernández ◽  
Jana Emich ◽  
Yasmine Port ◽  
Sibylle Mitschka ◽  
Marius Wöste ◽  
...  

AbstractMutations affecting the germline can result in infertility or the generation of germ cell tumors (GCT), highlighting the need to identify and characterize the genes controlling the complex molecular network orchestrating germ cell development. TRIM71 is a stem cell-specific factor essential for embryogenesis, and its expression has been reported in GCT and adult mouse testes. To investigate the role of TRIM71 in mammalian germ cell embryonic development, we generated a germline-specific conditional Trim71 knockout mouse (cKO) using the early primordial germ cell (PGC) marker Nanos3 as a Cre-recombinase driver. cKO mice are infertile, with male mice displaying a Sertoli cell-only (SCO) phenotype, which in humans is defined as a specific subtype of non-obstructive azoospermia characterized by the absence of developing germ cells in the testes’ seminiferous tubules. Infertility originates during embryogenesis, as the SCO phenotype was already apparent in neonatal mice. The in vitro differentiation of mouse embryonic stem cells (ESCs) into PGC-like cells (PGCLCs) revealed reduced numbers of PGCLCs in Trim71-deficient cells. Furthermore, in vitro growth competition assays with wild type and CRISPR/Cas9-generated TRIM71 mutant NCCIT cells, a human GCT-derived cell line which we used as a surrogate model for proliferating PGCs, showed that TRIM71 promotes NCCIT cell proliferation and survival. Our data collectively suggest that germ cell loss in cKO mice results from combined defects during the specification and maintenance of PGCs prior to their sex determination in the genital ridges. Last, via exome sequencing analysis, we identified several TRIM71 variants in a cohort of infertile men, including a loss-of-function variant in a patient with SCO phenotype. Our work reveals for the first time an association of TRIM71 variants with human male infertility, and uncovers further developmental roles for TRIM71 in the generation and maintenance of germ cells during mouse embryogenesis.


2021 ◽  
pp. 100439
Author(s):  
Villő Muha ◽  
Florence Authier ◽  
Zsombor Szoke-Kovacs ◽  
Sara Johnson ◽  
Jennifer Gallagher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document